Skip to main content

Home/ About The Indian Ocean/ Group items tagged NIO

Rss Feed Group items tagged

Jérôme OLLIER

Monsoon Influence on the Island Mass Effect Around the Maldives and Sri Lanka - @FrontM... - 0 views

  •  
    The monsoon circulation in the Northern Indian Ocean (NIO) is unique since it develops in response to the bi-annual reversing monsoonal winds, with the ocean currents mirroring this change through directionality and intensity. The interaction between the reversing currents and topographic features have implications for the development of the Island Mass Effect (IME) in the NIO. The IME in the NIO is characterized by areas of high chlorophyll concentrations identified through remote sensing to be located around the Maldives and Sri Lanka in the NIO. The IME around the Maldives was observed to reverse between the monsoons to downstream of the incoming monsoonal current whilst a recirculation feature known as the Sri Lanka Dome (SLD) developed off the east coast of Sri Lanka during the Southwest Monsoon (SWM). To understand the physical mechanisms underlying this monsoonal variability of the IME, a numerical model based on the Regional Ocean Modeling System (ROMS) was implemented and validated. The model was able to simulate the regional circulation and was used to investigate the three-dimensional structure of the IME around the Maldives and Sri Lanka in terms of its temperature and velocity. Results revealed that downwelling processes were prevalent along the Maldives for both monsoon periods but was applicable only to latitudes above 4°N since that was the extent of the monsoon current influence. For the Maldives, atolls located south of 4°N, were influenced by the equatorial currents. Around Sri Lanka, upwelling processes were responsible for the IME during the SWM but with strong downwelling during the NEM. In addition, there were also regional differences in intra-seasonal variability for these processes. Overall, the strength of the IME processes was closely tied to the monsoon current intensity and was found to reach its peak when the monsoon currents were at the maximum.
Jérôme OLLIER

Mission to explore genomic diversity of Indian Ocean - @CSIRNIOGoa - 0 views

  •  
    Twenty three scientists set sail on a research vessel off the eastern coast of India (14 March 2021) on a three-month-long quest to map the genomic and proteomic diversity of the Indian Ocean.
Jérôme OLLIER

#coronavirus - Long-Term Trends and Impact of SARS-CoV-2 #Covid19 Lockdown on the Prima... - 0 views

  •  
    COrona VIrus Disease (COVID) 2019 pandemic forced most countries to go into complete lockdown and India went on complete lockdown from 24th March 2020 to 8th June 2020. To understand the possible implications of lockdown, we analyze the long-term distribution of Net Primary Productivity (NPP) in the North Indian Ocean (NIO) and the factors that influence NPP directly and indirectly, for the period 2003-2019 and 2020 separately. There exists a seasonal cycle in the relationship between Aerosol Optical Depth (AOD), Chlorophyll-a (Chl-a) and NPP in agreement with the seasonal transport of aerosols and dust into these oceanic regions. In Arabian Sea (AS), the highest Chl-a (0.58 mg/m3), NPP (696.57 mg/C/m2/day) and AOD (0.39) are observed in June, July, August, and September (JJAS). Similarly, maximum Chl-a (0.48 mg/m3) and NPP (486.39 mg/C/m2/day) are found in JJAS and AOD (0.27) in March, April, and May (MAM) in Bay of Bengal. The interannual variability of Chl-a and NPP with wind speed and Sea Surface Temperature (SST) is also examined, where the former has a positive and the latter has a negative feedback to NPP. The interannual variability of NPP reveals a decreasing trend in NPP, which is interlinked with the increasing trend in SST and AOD. The analysis of wind, SST, Chl-a, and AOD for the pre-lockdown, lockdown, and post lockdown periods of 2020 is employed to understand the impact of COVID-19 lockdown on NPP. The assessment shows the reduction in AOD, decreased wind speeds, increased SST and reduced NPP during the lockdown period as compared to the pre-lockdown, post-lockdown and climatology. This analysis is expected to help to understand the impact of aerosols on the ocean biogeochemistry, nutrient cycles in the ocean biogeochemical models, and to study the effects of climate change on ocean ecosystems.
Jérôme OLLIER

Atmosphere-Ocean Coupled Variability in the Arabian/Persian Gulf - @FrontMarineSci - 0 views

  •  
    The Arabian Gulf comprises one of the world's most unique and fragile marine ecosystems; it is susceptible to the adverse effects of climate change due to its shallow depth and its location within an arid region that witnesses frequent severe atmospheric events. To reproduce these effects in numerical models, it is important to obtain a better understanding of the region's sea surface temperature (SST) variability patterns, as SST is a major driver of circulation in shallow environments. To this end, here, empirical orthogonal function (EOF) decomposition analysis was conducted to investigate interannual to multi-decadal SST variability in the Gulf from 1982 to 2020, using daily Level 4 Group for High Resolution SST (GHRSST) data. In this way, three dominant EOF modes were identified to contribute the Gulf's SST variability. Significant spatial and temporal correlations were found suggesting that throughout the 39-year study period, SST variability could be attributed to atmospheric changes driven by the El Nio-Southern Oscillation (ENSO), Atlantic Multi-decadal Oscillation (AMO), and Indian Ocean Dipole (IOD) climate modes. Spatial and temporal analyses of the dataset revealed that the average SST was 26.7°C, and that the warming rate from 1982 to 2020 reached up to 0.59°C/decade. A detailed examination of SST changes associated with heat exchange at the air-sea interface was conducted using surface heat fluxes from fifth generation (ERA5) European Centre for Medium-Range Weather Forecasts (ECMWF). Despite the SST warming trend, the accumulation of heat during the study period is suggesting that there was an overall loss of heat (cooling). This cooling reverted into heating in 2003 and has since been increasing.
Jérôme OLLIER

Bio robots make a splash in the Indian Ocean - CSIRO - 0 views

  •  
    It sounds like a bad sci-fi plot: a fleet of 'bio robots' are let loose in the world's third largest ocean to study its physical and biological makeup.
Jérôme OLLIER

Marine Macrobenthos of NorthWest India-Reviewing the Known and Unknown - @FrontMarineSci - 0 views

  •  
    Tropical ecosystems sustain higher biodiversity and face faster species extinction. However, baseline information of these areas is either inadequate or scattered due to various reasons. The 2,360 km long coast of North West India (NWI), is a heavily industrialized and urbanized zone. This coast with unique biogeographical and climatic features with two notified marine protected areas also supports rich biodiversity. This review was motivated by a need to construct a synoptic view on marine benthic ecology and functioning by consolidating available information of macrobenthos. Two thousand seventy-eight macrobenthic taxa belonging to 14 phyla were compiled from 147 references and were composed mostly by Polychaeta (n = 617), Gastropoda (n = 602), and Bivalvia (n = 216). Habitat wise, intertidal and subtidal zones were more intensely studied and contributed most to the diversity records. Sediment texture and salinity were the major drivers of macrobenthic community structure in the subtidal areas and estuaries, respectively. In the intertidal zones, zonation patterns related to the tidal levels and time of exposure were distinct with the high water zones being sparsely populated and lower intertidal zones sustaining higher species and functional diversities. All zones of NWI coast were distinctly impacted to various extent by anthropogenic activities affecting the resident macrobenthos. Decline in species richness and species substitution due to pollution were reported in urbanized zones. Non-monsoonal months favored a more conducive environment for the macrobenthic diversity and functionality. Hypoxia tolerant polychaete species mainly belonging to Spionidae and Cossuridae dominated during the low oxygen conditions of upwelling and OMZ zones of NWI. Inadequate identification and inconsistency of sampling methods were major deterrents for concluding trends of distributions. Suggestions for future macrobenthic research include focusing on lesser studied groups and are
Jérôme OLLIER

Bacterial and Fungal Diversity in Sediment and Water Column From the Abyssal Regions of... - 0 views

  •  
    The deep sea is the largest environment on Earth, comprising important resources of commercial interest. It is composed of a wide variety of ecosystems, which is home to often unique organisms that are yet to be described. The deep-sea is one of the least studied environments, where research is strongly linked to technological access and advances. With the recent advances in the next-generation sequencing and bioinformatics tools, there is an enhanced understanding of microbial diversity and ecological functions in deep sea. Multidisciplinary programs are being undertaken to investigate into microbial communities in diverse marine environments. As compared to other Oceans, the deeper parts of Indian Ocean are still poorly sampled and studied for bacterial, and more so fungal diversity. The studies reporting usage of modern sequencing tools to describe uncultured microbial diversity have seen a rise in numbers in the last decade. In this review, we summarize the important findings of research works carried on bacterial and fungal diversity from the abyssal regions of the Indian Ocean and provide our views on possible future paths.
1 - 8 of 8
Showing 20 items per page