Skip to main content

Home/ About The Indian Ocean/ Group items tagged Institut National d'Océanographie

Rss Feed Group items tagged

Jérôme OLLIER

Bio robots make a splash in the Indian Ocean - CSIRO - 0 views

  •  
    It sounds like a bad sci-fi plot: a fleet of 'bio robots' are let loose in the world's third largest ocean to study its physical and biological makeup.
Jérôme OLLIER

'Seahorses endangered due to rising demand, fishing nets' - @timesofindia - 0 views

  •  
    'Seahorses endangered due to rising demand, fishing nets'.
Jérôme OLLIER

Mission to explore genomic diversity of Indian Ocean - @CSIRNIOGoa - 0 views

  •  
    Twenty three scientists set sail on a research vessel off the eastern coast of India (14 March 2021) on a three-month-long quest to map the genomic and proteomic diversity of the Indian Ocean.
Jérôme OLLIER

Distribution Pattern of the Benthic Meiofaunal Community Along the Depth Gradient of th... - 0 views

  •  
    The continental margin harbors a variety of habitats that support incredible biodiversity and the function of their oceans' ecosystems. The meiofauna is considered a significant component of the benthic faunal community from the polar to the tropical regions. The meiofaunal community in the deep Indian Ocean, especially along the depth gradient, is poorly investigated. The present study aims to explore the benthic meiofaunal community structure along the depth gradients and its associated environment in the western Indian continental margin (WICM) and abyssal plain in the eastern Arabian Sea. Sediment samples were collected from seven different depths (111-3,918 m) along the WICM including the oxygen minimum zone (OMZ) and abyssal plain. A total of 22 taxa (groups) were encountered along the WICM. The nematodes (85%) were the most dominant taxa in all the depths, followed by copepods (11%), nauplii (5%), and polychaetes (1.36%). Our results suggest that (a) the organic matter has accumulated in OMZ sites; (b) a high amount of total organic carbon did not influence the meiofaunal density or biomass; (c) oxygen and depth gradients were significant drivers of the meiofaunal community, low levels of oxygen contributed to lower taxa diversity and density at 485 and 724 m depths; (d) a significant relationship of meiofaunal density and biomass with chloroplastic pigment equivalent (CPE) values indicates pelagic-benthic coupling. Copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans were affected by the low-oxygen conditions at the OMZ sites. Enhanced meiofaunal diversity, density, and biomass at deeper sites (non-OMZ-D) was attributed to increased abundance of copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans and were mostly concentrated on the surface sediment (0-4 cm) triggered by enhanced bottom-water oxygen and freshness of available food outside the OMZ except 3,918 m. Therefore, the present study showed the meiofaunal community
Jérôme OLLIER

Marine Macrobenthos of NorthWest India-Reviewing the Known and Unknown - @FrontMarineSci - 0 views

  •  
    Tropical ecosystems sustain higher biodiversity and face faster species extinction. However, baseline information of these areas is either inadequate or scattered due to various reasons. The 2,360 km long coast of North West India (NWI), is a heavily industrialized and urbanized zone. This coast with unique biogeographical and climatic features with two notified marine protected areas also supports rich biodiversity. This review was motivated by a need to construct a synoptic view on marine benthic ecology and functioning by consolidating available information of macrobenthos. Two thousand seventy-eight macrobenthic taxa belonging to 14 phyla were compiled from 147 references and were composed mostly by Polychaeta (n = 617), Gastropoda (n = 602), and Bivalvia (n = 216). Habitat wise, intertidal and subtidal zones were more intensely studied and contributed most to the diversity records. Sediment texture and salinity were the major drivers of macrobenthic community structure in the subtidal areas and estuaries, respectively. In the intertidal zones, zonation patterns related to the tidal levels and time of exposure were distinct with the high water zones being sparsely populated and lower intertidal zones sustaining higher species and functional diversities. All zones of NWI coast were distinctly impacted to various extent by anthropogenic activities affecting the resident macrobenthos. Decline in species richness and species substitution due to pollution were reported in urbanized zones. Non-monsoonal months favored a more conducive environment for the macrobenthic diversity and functionality. Hypoxia tolerant polychaete species mainly belonging to Spionidae and Cossuridae dominated during the low oxygen conditions of upwelling and OMZ zones of NWI. Inadequate identification and inconsistency of sampling methods were major deterrents for concluding trends of distributions. Suggestions for future macrobenthic research include focusing on lesser studied groups and are
Jérôme OLLIER

Distinctive Community Patterns With Exceptional Diversity of Polychaetes Around a Tecto... - 0 views

  •  
    Marine soft-sediments sustain functionally important benthic assemblages that are critical for remineralization of organic matter and supply of nutrients to the water column. While these assemblages are well studied along continental margins, investigations from insular margin that surround oceanic islands are very limited. This paper examines the distribution and standing stock of macrozoobenthos at 50, 100, and 200 m depth contours surrounding the Andaman and Nicobar archipelago in the tropical Indian Ocean. The standing stock of macrozoobenthos decreased from the mesophotic reef areas (50 m depth) to the deeper strata (200 m), particularly in the case of the dominant groups, the polychaetes and crustaceans. Smaller-sized, interstitial polychaetes and crustaceans were abundant in the coarser sandy sediments at the shallower sites. The polychaetes were represented by 606 species (279 genera) in the study, of which >50% were rare species. Based on polychaete species composition, three regions were delineated in the study area - the Nicobar margin, the western margin of the Andaman (Bay of Bengal sector), and the eastern margin of the Andaman (Andaman Sea sector). The long, uninterrupted Andaman Island chain formed a geographic barrier separating the eastern and western margins, resulting in the regional distinctions in sediment nature and hydrographic characteristics, which in turn influenced species distribution. Corresponding differences were absent in the case of the Nicobar Islands, which are widely separated by transecting channels, permitting exchange of water between the Bay of Bengal and the Andaman Sea. Within the three regions, polychaete communities changed significantly in taxonomic and functional composition with increasing depth. The well oxygenated, coarse sandy sediments around mesophotic reefs (50 m) harbored predator-dominated assemblages. The 200 m sites, which were characterized by oxygen minimum conditions (<0.5 ml.l-1), particularly around th
Jérôme OLLIER

Massive Nitrogen Loss Over the Western Indian Continental Shelf During Seasonal Anoxia:... - 0 views

  •  
    The western Indian continental shelf houses the world's largest naturally formed coastal low-oxygen zone that develops seasonally during the summer monsoon. We investigated multiple reductive nitrogen transformation pathways and quantified their rates in this system through anaerobic incubations with additions of 15N-labeled substrates during the anoxic period for three consecutive years (2008-2010). Addition of 15N labeled ammonium (15NH4+) resulted in low to moderate anaerobic ammonia oxidation (Anammox) rates in about half of our incubations from the oxygen depleted waters. In contrast, incubations with labeled nitrite (15NO2-) led to large production of 30N2 over 29N2 in all incubation experiments, indicating denitrification to be the dominant N-loss pathway. Rates of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) were found to be highly variable and were lower by an order of magnitude than the denitrification rates. Extrapolation of average rates over the sampling periods and volume of anoxic waters showed large nitrogen removal (3.70-11.1 Tg year-1) which is about three times as high as the previously reported estimate (1.3-3.8 Tg year-1). Despite the small area it occupies, this shallow seasonal anoxic zone may account for as much as 20-60% the of the total annual fixed nitrogen loss in the perennial oxygen minimum zone of the Arabian Sea.
Jérôme OLLIER

Bacterial and Fungal Diversity in Sediment and Water Column From the Abyssal Regions of... - 0 views

  •  
    The deep sea is the largest environment on Earth, comprising important resources of commercial interest. It is composed of a wide variety of ecosystems, which is home to often unique organisms that are yet to be described. The deep-sea is one of the least studied environments, where research is strongly linked to technological access and advances. With the recent advances in the next-generation sequencing and bioinformatics tools, there is an enhanced understanding of microbial diversity and ecological functions in deep sea. Multidisciplinary programs are being undertaken to investigate into microbial communities in diverse marine environments. As compared to other Oceans, the deeper parts of Indian Ocean are still poorly sampled and studied for bacterial, and more so fungal diversity. The studies reporting usage of modern sequencing tools to describe uncultured microbial diversity have seen a rise in numbers in the last decade. In this review, we summarize the important findings of research works carried on bacterial and fungal diversity from the abyssal regions of the Indian Ocean and provide our views on possible future paths.
1 - 9 of 9
Showing 20 items per page