Skip to main content

Home/ About The Indian Ocean/ Group items tagged zone pélagique

Rss Feed Group items tagged

Jérôme OLLIER

Environment variables affect CPUE and spatial distribution of fishing grounds on the li... - 0 views

  •  
    To better develop and protect the pelagic fishery in the northwest Indian Ocean, China's fishing enterprises have been producing pelagic fisheries in the said area for a long time. Based on the fishing log data of light falling gear in the northwest Indian Ocean from 2016 to 2020, this study analyzed the impact of different time scales on the catch rate and fishing ground center of gravity of light falling gear fishing grounds. We also explored the relationship between different time scales and catch per unit effort (CPUE) by using the fishing ground center of gravity, the Random Forest model (RF), and the generalized additive model (GAM). The results were shown as follows: (1) From 2016 to 2020, 76,576 t were captured, and 16,496 nets were operated; (2) The gravity center of fishing ground in the Northwest Indian Ocean moved to the northeast as a whole, and the monthly fishing ground gravity center changed first to the Southern and then to the northern; (3) RF model (R² = 0.709, RMSE = 0.2034, and prediction accuracy is 55.8%), which is better than the GAM model (R² = 0.632, RMSE = 0.2242, and prediction accuracy is 37.3%). In the RF model, the importance of time variables on CPUE was in the order of week, year, operation time, and lunar phase; in the GAM model, it was week, year, lunar phase, and operation time. On the whole, the importance of the long time scale (year, week) is greater than that of the short time scale (lunar phase and operation time). (4) The RF model and GAM model show that the most critical environmental variables were SST, DO, SSS, and Chla, and the least important were SSH, Δ50, and CV50. SST, Chla, and DO significantly impact pelagic fishing and CPUE and are critical reference indexes for predicting the Northwest Indian Ocean light falling gear fishing ground. (5) The 95% confidence interval showed that the suitable interval of time, space, and environmental variables in the RF model was much smaller than in the GAM model.
Jérôme OLLIER

Assessment of phytoplankton diversity, distribution, and environmental variables along ... - 0 views

  •  
    Coastal waters are dynamic because of anthropogenic activities that contribute nutrients and contaminants. These changes have the potential to alter patterns of primary production and thus pelagic food webs. Here, we investigated the spatial variation of the phytoplankton community and its response to changing environmental variables at 84 stations along the five coastal districts of Tamil Nadu (TN). During the present study, 85 phytoplankton species were recorded, such as diatoms (64), dinoflagellates (18), silicoflagellates (1), and Cyanophyceae (2). The maximum phytoplankton abundance was recorded on the Thanjavur coast and gradually decreased towards the south coast of Tamil Nadu. Among the phytoplankton community, 50% was dominated by pennate diatoms, attributed to higher NO3− concentrations in the coastal waters due to agricultural discharge. Cluster analysis revealed that Ramanathapuram and Tirunelveli formed a closed cluster, whereas Thanjavur and Pudukottai formed a separate closed cluster associated with higher nutrient and metal concentrations, highlighting the difference in physicochemical parameters between the northern and southern districts of the TN coast. Relatively high nutrient concentrations in the coastal waters of northern districts are of greater concern, which could impact the coastal ecosystem. Coastal eutrophication is becoming a widespread phenomenon, causing disruption in the food chain and ecosystem balances and hence requiring regular monitoring and management.
Jérôme OLLIER

Quantifying the controlling mineral phases of rare-earth elements in deep-sea pelagic s... - 0 views

  •  
    Recent studies suggest that pelagic sediments can enrich rare-earth elements (REE) acting as a significant reservoir for the global REE budget as well as a potential resource for future exploitation. Although Ca-phosphate (e.g., bioapatite fossils) and Fe-Mn (oxyhydr)oxides (e.g., micronodule) have been considered important REE carriers in deep-sea sediments, the proportion of REE held by each mineral phase remains enigmatic. Here, we have investigated the sediments from two promising REE-rich prospective areas: the Tiki Basin in the Southeast Pacific (TKB) and the Central Indian Ocean Basin (CIOB). The mineral grains including bioapatite fossils and Fe-Mn micronodules have been inspected individually by in-situ microscale analytical methods. Correspondently, the REE bound to Ca-phosphate and Fe-Mn (oxyhydr)oxides have been sequentially extracted and quantified. The crucial role of Ca-phosphate is substantiated by sequential leaching which reveals its dominance in hosting ~69.3-89.4% of total REE. The Fe-Mn (oxyhydr)oxides carry ~8.2% to 22.0% of REE in bulk sediments, but they account for ~70.0-80.5% of Ce owing to their preferential adsorption of Ce over the other REE. Surface sediment on modern seafloor can accumulate high REE contents resulting from the REE scavenging by the host phases within the range of sediment-seawater interface. Differences between TKB and CIOB samples indicate that the REE enrichment in the deep-sea environment may be controlled by multiple factors including the productivity of overlying seawater (e.g., phosphorus flux), water depth relative to carbonate compensation depth (CCD), sedimentation rate, redox condition, and hydrothermal vent input (e.g., Fe-Mn precipitations).
Jérôme OLLIER

Baseline Study of Microplastics in the Gastrointestinal Tract of Commercial Species Inh... - 0 views

  •  
    A microplastics (MPs) emergence study in pelagic and mesopelagic species was carried out to delineate coastal degradation and ecosystem status around the Karachi metropolis. Species of high commercial and ecological worth were sampled using a gillnet of 1.5 cm knot-to-knot mesh size in November and December 2021. In total twenty-six individuals including Liza subviridis (15), Thryssa dussumieri (3), Rastrelliger kanagurta (2), and Portunus sanguinolentus (6) were used to perceive MPs. A strong linearity between body length and MPs (R2 = 0.937, SE 0.071 and R2 = 0.928, SE 0.104) were calculated for L. subviridis and P. sangiuilatus, respectively. However, the data of T. dussummeiri and R. Kanagurta showed minimization failure. The MPs in GIT were extracted using direct observation under a sophisticated binuclear microscope and chemical digestion (KOH) together with wet peroxide oxidation (H2O2+FeSO4) methods. The MP materials were categorized as foam, film, fiber, fragment, and beads of three different sizes 170, 120, 100 μm in the stomach, intestine, and esophagus. Film-type MPs appeared frequently, whereas beads were rarely seen. It is hoped that this baseline research would help to minimize industrial release, recognize critical knowledge gaps, and demonstrate MP flux being released into the aquatic environment. The results will support mitigation of this emerging threat to the living resources around the Karachi coastal area.
1 - 4 of 4
Showing 20 items per page