Skip to main content

Home/ About The Indian Ocean/ Group items tagged Asie du Sud-est

Rss Feed Group items tagged

Jérôme OLLIER

Contact- and Water-Mediated Effects of Macroalgae on the Physiology and Microbiome of T... - 0 views

  •  
    Competitive interactions between corals and macroalgae play an important role in determining benthic community structure on coral reefs. While it is known that macroalgae may negatively affect corals, the relative influence of contact- versus water-mediated macroalgal interactions on corals - such as via an influence on coral-associated microbiomes - is less well understood. Further, the impacts of macroalgae on corals that have persisted in a heavily urbanized reef system have not been explored previously. We examined the effects of the macroalgae Lobophora sp. and Hypnea pannosa on the physiology and microbiome of three Indo-Pacific coral species (Merulina ampliata, Montipora stellata, and Pocillopora acuta) collected from two reefs in Singapore (Pulau Satumu and Kusu Island), and compared how these effects varied between direct contact and water-mediated interactions. Direct contact by Lobophora sp. caused visible tissue bleaching and reduced maximum quantum yield (Fv/Fm) in all three coral species, while direct contact by H. pannosa only led to slight, but significant, suppression of Fv/Fm. No detrimental effects on coral physiology were observed when corals were in close proximity to the macroalgae or when in direct contact with algal mimics. However, both direct contact and water-mediated interactions with Lobophora sp. and H. pannosa altered the prokaryotic community structures in M. stellata. For M. ampliata and P. acuta, the changes in their microbiomes in response to algal treatments were more strongly influenced by the source reefs from which the coral colonies were collected. In particular, coral colonies collected from Kusu Island had proportionately more initial abundances of potentially pathogenic bacteria in their microbiomes than those collected from Pulau Satumu; nevertheless, coral fragments from Kusu Island had the same physiological responses to macroalgal interactions as corals from Pulau Satumu. Overall, our results reveal that, for the sp
Jérôme OLLIER

Surface Phytoplankton Assemblages and Controlling Factors in the Strait of Malacca and ... - 0 views

  •  
    Shifts in phytoplankton phenology were observed in the Strait of Malacca (SM) and Sunda Shelf (SS), which were speculated to be potentially related to global warming and climate anomaly events. Such interactions between phytoplankton structure and physico-chemical factors were less known in narrow straits. Therefore, the spatial distribution pattern and diversity of surface phytoplankton assemblage, local hydrology, and nutrient regimes were investigated over the SM and SS (South China Sea, SCS) during 2017 and 2018 pre-monsoon season (spring). Diatoms, dinoflagellates, and cyanobacteria were representatives of microphytoplankton in the survey area. Total phytoplankton abundance peaked near Singapore Strait (SGS) and diminished toward SS. From the lower ratio of diatoms to dinoflagellates (<3) in SS, we deduced lower carbon pump efficiency here. In agreement with the modeled results proposed previously, cold conditions (negative Indian Ocean Dipole, IOD) were more suitable for high diatom (especially centric forms) abundance, while warm scenarios (positive IOD/El Niño period as in 2017) seemed to favor dinoflagellates and/or cyanobacteria. Specifically, diatom proportion increased by 30% and dinoflagellate, cyanobacteria reduced by 71%, 75% in response to shifts of climate anomaly from 2017 cruise to 2018 cruise. This study between field microalgae and physical and chemical conditions would be helpful to launch large-scale climate model, biogeochemistry, and carbon cycling in future research.
Jérôme OLLIER

Thailand Proposes $20bn Silk-Road-Canal - @PortTechnology - 0 views

  •  
    Thailand Proposes $20bn Silk-Road-Canal.
  •  
    Thailand Proposes $20bn Silk-Road-Canal.
Jérôme OLLIER

Via @theAGU - Geological Insights from Malaysia Airlines Flight #MH370 Search - @AGU_Eos - 0 views

  •  
    Geological Insights from Malaysia Airlines Flight MH370 Search.
Jérôme OLLIER

Cave dig shows the earliest Australians enjoyed a coastal lifestyle - @ConversationEDU - 0 views

  •  
    Cave dig shows the earliest Australians enjoyed a coastal lifestyle.
Jérôme OLLIER

Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe - @Orego... - 0 views

  •  
    Sediment that eroded from the Himalayas and Tibetan plateau over millions of years was transported thousands of kilometers by rivers and in the Indian Ocean - and became sufficiently thick over time to generate temperatures warm enough to strengthen the sediment and increase the severity of the catastrophic 2004 Sumatra earthquake.
Jérôme OLLIER

Researchers drill deep to understand why the Sumatra earthquake was so severe - @EurekA... - 0 views

  •  
    Researchers drill deep to understand why the Sumatra earthquake was so severe.
Jérôme OLLIER

Search for missing plane opens window on Indian Ocean seafloor - @IMASUTAS - 0 views

  •  
    Detailed imaging of the seafloor used to search for Malaysia Airlines flight MH370 is providing unprecedented insights into the geological development of the Indian Ocean.
Jérôme OLLIER

New kind of tropical cyclone - @Flinders - 0 views

  •  
    Flinders University oceanography experts have described a new kind of cyclone in the Indian Ocean near Sumatra after observing satellite surface winds in the region.
Jérôme OLLIER

Via @NOCmarinePhys Effect of Tides on the Indonesian Seas Circulation and Their Role on... - 0 views

  •  
    The effect of tides on the Indonesian Throughflow (ITF) is explored in a regional ocean model of South East Asia. Our model simulations, with and without tidal forcing, reveal that tides drive only a modest increase in the ITF volume, heat and salt transports toward the Indian Ocean. However, tides drive large regional changes in these transports through Lombok Strait, Ombai Strait and the Timor Sea, and regulate the partitioning of the ITF amongst them. The effect of tidal mixing on the salinity and temperature profiles within the Indonesian Seas drives a small decrease in the heat and salt transports toward the Indian Ocean in all three exit passages. In contrast, the tidal residual circulation due to the interaction between the tides and the topography and stratification (including the effects of tidal mixing on the circulation) leads to a large decrease in the transports toward the Indian Ocean through the Lombok and Ombai straits, but a large increase through the Timor Sea. Hence, the small net contribution from tides to the ITF's volume, heat and salt transports is due to a compensation between large, but opposing tidal residual transports at the combined Lombok and Ombai straits and in the Timor Sea. Our results indicate that explicit representation of tides, often missing in Earth system models, is necessary to accurately capture the ITF's pathway and so the tracer transport from the Pacific into the Indian Ocean.
« First ‹ Previous 181 - 200 of 204 Next ›
Showing 20 items per page