Skip to main content

Home/ About The Indian Ocean/ Group items tagged magnitude

Rss Feed Group items tagged

Jérôme OLLIER

Alerte au tsunami après un séisme de magnitude 8,6 au large de l'Indonésie - ... - 0 views

  •  
    Alerte au tsunami après un séisme de magnitude 8,6 au large de l'Indonésie.
Jérôme OLLIER

Indonesia earthquake off Sumatra measures 7.9 - @BBCNews - 0 views

  •  
    A 7.9 magnitude earthquake strikes off the coast of western Indonesia, the US Geological Survey reports, with no immediate reports of damage.
Jérôme OLLIER

Huge tsunami hit Oman 1,000 years ago - @UniBonn - 0 views

  •  
    A natural event of similar magnitude would have devastating consequences today, warn researchers at the University of Bonn.
Jérôme OLLIER

Massive Nitrogen Loss Over the Western Indian Continental Shelf During Seasonal Anoxia:... - 0 views

  •  
    The western Indian continental shelf houses the world's largest naturally formed coastal low-oxygen zone that develops seasonally during the summer monsoon. We investigated multiple reductive nitrogen transformation pathways and quantified their rates in this system through anaerobic incubations with additions of 15N-labeled substrates during the anoxic period for three consecutive years (2008-2010). Addition of 15N labeled ammonium (15NH4+) resulted in low to moderate anaerobic ammonia oxidation (Anammox) rates in about half of our incubations from the oxygen depleted waters. In contrast, incubations with labeled nitrite (15NO2-) led to large production of 30N2 over 29N2 in all incubation experiments, indicating denitrification to be the dominant N-loss pathway. Rates of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) were found to be highly variable and were lower by an order of magnitude than the denitrification rates. Extrapolation of average rates over the sampling periods and volume of anoxic waters showed large nitrogen removal (3.70-11.1 Tg year-1) which is about three times as high as the previously reported estimate (1.3-3.8 Tg year-1). Despite the small area it occupies, this shallow seasonal anoxic zone may account for as much as 20-60% the of the total annual fixed nitrogen loss in the perennial oxygen minimum zone of the Arabian Sea.
Jérôme OLLIER

Tropical cyclones shape mangrove productivity gradients in the Indian subcontinent - @S... - 0 views

  •  
    Recent literature on the impact of cyclones on mangrove forest productivity indicates that nutrient fertilizations aided by tropical cyclones enhance the productivity of mangrove forests. We probe the implications of these predictions in the context of Indian mangroves to propose potential future directions for mangrove research in the subcontinent. First, we look at the time series trend (2000-2020) in satellite-derived gross primary productivity (GPP) datasets for seven mangrove forests across the country's coastline. Second, we compare seasonal changes in soil nutrient levels for a specific site to further the arguments proposed in the literature and investigate the role of potential drivers of mangrove productivity. We find overall increasing trends for GPP over the past two decades for all seven mangrove sites with seasonal fluctuations closely connected to the tropical storm activities for three sites (Bhitarkanika, Pichavaram, and Charao). Additionally, organic carbon and nitrogen levels showed no significant trend, but phosphorus levels were higher during the post-monsoon-winter period for Bhitarkanika. Our findings expand the predictions of previous studies that emphasized the role of storm-induced nutrient fluxes and freshwater supply as primary drivers of productivity gradients in mangroves. Our study provides insights on how mangrove productivity may change with fluctuating frequency and magnitude of cyclones under a changing climate, implying the need for more mechanistic studies in understanding the long-term impact on mangrove productivity in the region.
Jérôme OLLIER

Coral reef island shoreline change and the dynamic response of the freshwater lens, Huv... - 0 views

  •  
    Low-lying coral reef islands have been projected to become uninhabitable by the end of the century due to sea level rise, but such projections of vulnerability assume that reef islands are static landforms that flood incrementally with sea level rise. In fact, GIS-based reef island shoreline analyses have demonstrated that reef islands are highly dynamic landforms that may adjust their shorelines in response to changing environmental conditions. However, the vast majority of reef island shoreline analyses have been undertaken in the Pacific Ocean, leaving our understanding of changes in the Indian Ocean more limited. Further, our knowledge of how island dynamics can impact groundwater resources is restricted due to the assumption that islands will exhibit purely erosional responses to sea level rise. Here, we analyse shoreline evolution on 49 reef islands over a 50-year timeframe in Huvadhoo Atoll, Maldives. Additionally, rates of shoreline change were used to undertake numerical modelling of shifts in freshwater lens volume in 2030, 2050 and 2100 in response to changes in recharge. Despite sea level rising at 4.24 mm/year (1969-2019), accretion was prevalent on 53% of islands, with the remaining islands eroding (25%) or remaining stable (22%). Average net shoreline movement was 4.13 m, ranging from -17.51 to 65.73 m; and the average rate of shoreline change (weighted linear regression) was 0.13 m/year, ranging from -0.07 to 2.65 m/year. The magnitudes and rates of reef island evolution were found to be highly site-specific, with island type found to be the only significant predictor of either net shoreline movement or weighted linear regression. Results suggest that freshwater lens volume was substantially impacted by shoreline change compared to changes in recharge whereby accretion and erosion led to large increases (up to 65.05%) decreases (up to -50.4%) in les volume, respectively. We suggest that the capacity of reef islands to both (1) adjust their shorelines
Jérôme OLLIER

A regional map of mangrove extent for Myanmar, Thailand, and Cambodia shows losses of 4... - 0 views

  •  
    Southeast Asia is home to some of the planet's most carbon-dense and biodiverse mangrove ecosystems. There is still much uncertainty with regards to the timing and magnitude of changes in mangrove cover over the past 50 years. While there are several regional to global maps of mangrove extent in Southeast Asia over the past two decades, data prior to the mid-1990s is limited due to the scarcity of Earth Observation (EO) data of sufficient quality and the historical limitations to publicly available EO. Due to this literature gap and research demand in Southeast Asia, we conducted a classification of mangrove extent using Landsat 1-2 MSS Tier 2 data from 1972 to 1977 for three Southeast Asian countries: Myanmar, Thailand, and Cambodia. Mangrove extent land cover maps were generated using a Random Forest machine learning algorithm that effectively mapped a total of 15,420.51 km2. Accuracy assessments indicated that the classification for the mangrove and non-mangrove class had a producer's accuracy of 80% and 98% user's accuracy of 90% and 96%, and an overall accuracy of 95%. We found a decline of 6,830 km2 between the 1970s and 2020, showing that 44% of the mangrove area in these countries has been lost in the past 48 years. Most of this loss occurred between the 1970s and 1996; rates of deforestation declined dramatically after 1996. This study also elaborated on the nature of mangrove change within the context of the social and political ecology of each case study country. We urge the remote sensing community to empathetically consider the local need of those who depend on mangrove resources when discussing mangrove loss drivers.
Jérôme OLLIER

Mechanisms of Interannual Variability of Ocean Bottom Pressure in the Southern Indian O... - 0 views

  •  
    The study of ocean bottom pressure (OBP) helps to understand the changes in the sea level budget and ocean deep circulation. In this study, the characteristics and mechanisms of interannual OBP variability in the Southern Indian Ocean are examined using Gravity Recovery and Climate Experiment (GRACE) satellite data from 2003 to 2016. Results show that there are two energetic OBP centers in the Southern Indian Ocean (50°-60°S, 40°-60°E and 45°-60°S, 80°-120°E). The OBP magnitudes at two centers have strong variability on interannual time scales, and their values are larger during austral summer (NDJF) and winter (JJAS). Atmospheric forcing plays an important role in local OBP variability. The high (low) sea level pressure (SLP) over the Southern Indian Ocean benefits positive (negative) OBP anomalies via the convergence (divergence) of Ekman transport driven by local wind. Such SLP anomalies are related to the Southern Annular Mode (SAM), Southern Oscillation (SO) and Indian Ocean dipole (IOD). SAM can influence the OBP changes in both austral summer and winter, while SO and IOD have positive correlations with OBP variability during austral summer and austral winter, respectively. These results are validated by a mass-conservation ocean model, which further confirms the importance of atmospheric forcing on the interannual OBP variations.
Jérôme OLLIER

Spatiotemporal distributions of air-sea CO2 flux modulated by windseas in the Southern ... - 0 views

  •  
    The Southern Indian Ocean is a major reservoir for rapid carbon exchange with the atmosphere, plays a key role in the world's carbon cycle. To understand the importance of anthropogenic CO2 uptake in the Southern Indian Ocean, a variety of methods have been used to quantify the magnitude of the CO2 flux between air and sea. The basic approach is based on the bulk formula-the air-sea CO2 flux is commonly calculated by the difference in the CO2 partial pressure between the ocean and the atmosphere, the gas transfer velocity, the surface wind speed, and the CO2 solubility in seawater. However, relying solely on wind speed to measure the gas transfer velocity at the sea surface increases the uncertainty of CO2 flux estimation. Recent studies have shown that the generation and breaking of ocean waves also significantly affect the gas transfer process at the air-sea interface. In this study, we highlight the impact of windseas on the process of air-sea CO2 exchange and address its important role in CO2 uptake in the Southern Indian Ocean. We run the WAVEWATCH III model to simulate surface waves in this region over the period from January 1st 2002 to December 31st 2021. Then, we use the spectral partitioning method to isolate windseas and swells from total wave fields. Finally, we calculate the CO2 flux based on the new semiempirical equation for gas transfer velocity considering only windseas. We found that after considering windseas' impact, the seasonal mean zonal flux (mmol/m2·d) increased approximately 10%-20% compared with that calculated solely on wind speed in all seasons. Evolution of air-sea net carbon flux (PgC) increased around 5.87%-32.12% in the latest 5 years with the most significant seasonal improvement appeared in summer. Long-term trend analysis also indicated that the CO2 absorption capacity of the whole Southern Indian Ocean gradually increased during the past 20 years. These findings extend the understanding of the roles of the Southern Indian Ocea
Jérôme OLLIER

Community-managed coral reef restoration in southern Kenya initiates reef recovery usin... - 0 views

  •  
    Monitoring of reef restoration efforts and artificial reefs (ARs) has typically been limited to coral fragment survival, hampering evaluation of broader objectives such as ecosystem recovery. This study aimed to determine to what extent AR design influences the ecological recovery of restored reefs by monitoring outplanted coral fragments, benthic cover, coral recruitment and fish and invertebrate communities for two years. Four AR designs (16 m2), unrestored controls and natural reef patches as reference (n = 10) were established in Mkwiro, Kenya. ARs consisted either of concrete disks with bottles, layered concrete disks, metal cages or a combination thereof. A mixture of 18 branching coral species (mainly Acropora spp.) was outplanted on ARs at a density of 7 corals m-2. After two years, 60% of all outplanted fragments had survived, already resulting in coral cover on most ARs comparable (though Acropora-dominated) to reference patches. Coral survival differed between ARs, with highest survival on cages due to the absence of crown-of-thorns sea star predation on this design. In total, 32 coral genera recruited on ARs and recruit densities were highest on reference patches, moderate on concrete ARs and low on cages. ARs and reference patches featured nearly twice the fish species richness and around an order of magnitude higher fish abundance and biomass compared to control patches. Fish abundance and biomass strongly correlated with coral cover on ARs. AR, reference and control patches all had distinct fish species compositions, but AR and reference patches were similar in terms of trophic structure of their fish communities. Motile invertebrates including gastropods, sea urchins, sea cucumbers and sea stars were present at ARs, but generally more abundant and diverse at natural reference patches. Taken together, all studied ecological parameters progressed towards reef ecosystem recovery, with varying influences of AR design and material. We recommend a combinat
Jérôme OLLIER

Up to 80 percent of Thailand's tsunami warning system needs maintenance - @Reuters - 0 views

  •  
    Up to 80 percent of Thailand's tsunami warning system needs maintenance.
Jérôme OLLIER

Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe - @Orego... - 0 views

  •  
    Sediment that eroded from the Himalayas and Tibetan plateau over millions of years was transported thousands of kilometers by rivers and in the Indian Ocean - and became sufficiently thick over time to generate temperatures warm enough to strengthen the sediment and increase the severity of the catastrophic 2004 Sumatra earthquake.
Jérôme OLLIER

Researchers drill deep to understand why the Sumatra earthquake was so severe - @EurekA... - 0 views

  •  
    Researchers drill deep to understand why the Sumatra earthquake was so severe.
1 - 17 of 17
Showing 20 items per page