Skip to main content

Home/ About The Indian Ocean/ Group items tagged topographie

Rss Feed Group items tagged

Jérôme OLLIER

First ROV Exploration of the Perth Canyon: Canyon Setting, Faunal Observations, and Ant... - 0 views

  •  
    This study represents the first ROV-based exploration of the Perth Canyon, a prominent submarine valley system in the southeast Indian Ocean offshore Fremantle (Perth), Western Australia. This multi-disciplinary study characterizes the canyon topography, hydrography, anthropogenic impacts, and provides a general overview of the fauna and habitats encountered during the cruise. ROV surveys and sample collections, with a specific focus on deep-sea corals, were conducted at six sites extending from the head to the mouth of the canyon. Multi-beam maps of the canyon topography show near vertical cliff walls, scarps, and broad terraces. Biostratigraphic analyses of the canyon lithologies indicate Late Paleocene to Late Oligocene depositional ages within upper bathyal depths (200-700 m). The video footage has revealed a quiescent 'fossil canyon' system with sporadic, localized concentrations of mega- and macro-benthos (∼680-1,800 m), which include corals, sponges, molluscs, echinoderms, crustaceans, brachiopods, and worms, as well as plankton and nekton (fish species). Solitary (Desmophyllum dianthus, Caryophyllia sp., Vaughanella sp., and Polymyces sp.) and colonial (Solenosmilia variabilis) scleractinians were sporadically distributed along the walls and under overhangs within the canyon valleys and along its rim. Gorgonian, bamboo, and proteinaceous corals were present, with live Corallium often hosting a diverse community of organisms. Extensive coral graveyards, discovered at two disparate sites between ∼690-720 m and 1,560-1,790 m, comprise colonial (S. variabilis) and solitary (D. dianthus) scleractinians that flourished during the last ice age (∼18 ka to 33 ka BP). ROV sampling (674-1,815 m) spanned intermediate (Antarctic Intermediate Water) and deep waters (Upper Circumpolar Deep Water) with temperatures from ∼2.5 to 6°C. Seawater CTD profiles of these waters show consistent physical and chemical conditions at equivalent depths between dive
Jérôme OLLIER

Via @NOCmarinePhys Effect of Tides on the Indonesian Seas Circulation and Their Role on... - 0 views

  •  
    The effect of tides on the Indonesian Throughflow (ITF) is explored in a regional ocean model of South East Asia. Our model simulations, with and without tidal forcing, reveal that tides drive only a modest increase in the ITF volume, heat and salt transports toward the Indian Ocean. However, tides drive large regional changes in these transports through Lombok Strait, Ombai Strait and the Timor Sea, and regulate the partitioning of the ITF amongst them. The effect of tidal mixing on the salinity and temperature profiles within the Indonesian Seas drives a small decrease in the heat and salt transports toward the Indian Ocean in all three exit passages. In contrast, the tidal residual circulation due to the interaction between the tides and the topography and stratification (including the effects of tidal mixing on the circulation) leads to a large decrease in the transports toward the Indian Ocean through the Lombok and Ombai straits, but a large increase through the Timor Sea. Hence, the small net contribution from tides to the ITF's volume, heat and salt transports is due to a compensation between large, but opposing tidal residual transports at the combined Lombok and Ombai straits and in the Timor Sea. Our results indicate that explicit representation of tides, often missing in Earth system models, is necessary to accurately capture the ITF's pathway and so the tracer transport from the Pacific into the Indian Ocean.
Jérôme OLLIER

Via @theAGU - Geological Insights from Malaysia Airlines Flight #MH370 Search - @AGU_Eos - 0 views

  •  
    Geological Insights from Malaysia Airlines Flight MH370 Search.
Jérôme OLLIER

Seafloor Shapes on the Flanks of Mid-Ocean Ridges Linked to Magma Supply - @AGU_Eos - 0 views

  •  
    New research suggests the source of morphologic variation on mid-ocean ridges might be deeper than scientists thought.
1 - 5 of 5
Showing 20 items per page