Skip to main content

Home/ Dr. Goodyear/ Group items matching ""adaptive immunity"" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
Nathan Goodyear

Immune responses to malignancies - 0 views

  • increased densities of T-cell infiltrates with a high proportion of CD8+ T cells within primary colorectal carcinomas were associated with a significant protection against tumor recurrence
  • coexpression of genes mediating cytotoxicity and TH1 adaptive immune responses accurately predicted survival in patients with colorectal carcinoma independently of the metastatic status.
  • tumor-specific cytolytic T lymphocytes (CTLs)
  • ...10 more annotations...
  • tumor-associated antigens (TAs)
  • Proinflammatory cytokines secreted by inflammatory cells can contribute to tumor progression, and soluble factors produced by the tumor in response to nonspecific or tumor-specific signals, such as prostaglandin E2 (PGE2), adenosine, or TGF-β, downregulate functions of immune cells
  • they are largely ineffective in arresting tumor growth, although they can proliferate and mediate antitumor cytotoxicity on their removal from the tumor bed and ex vivo IL-2 activation.42
  • DCs (HLA-DR+CD86+CD80+CD14−) are nature’s best APCs
  • They are a common component of tumor immune infiltrates and are responsible for the uptake, processing, and cross-presentation of TAs to naive or memory T cells, thus playing a crucial role in the generation of tumor-specific effector T cells
  • DCs control the induction of Treg cells. In patients with cancer, cellular interactions between antigen-presenting DCs and T cells lead to expansion and accumulation of Treg cells at the tumor site and in the periphery
  • NK cells (CD3−CD56+CD16+), which mediate innate immunity and contain both perforin-rich and granzyme-rich granules, are well equipped to mediate lysis of tumor cells
  • B cells (CD19+, CD20+) are also rare in most human tumors, with the exception of breast cancer and melanoma
  • The initial acute inflammation involving the recruitment and influx of antitumor effector cells is replaced by chronic inflammation in later stages of tumor progression
  • Tissue hypoxia plays a major role in shaping the nature of immune infiltrates in tumors
  •  
    Another great review of the immune system during different stages of carcinogenesis; how the cancer manipulates the immue system to cloak itself from the immune system.
Nathan Goodyear

Principles of innate and adaptive immunity - Immunobiology - NCBI Bookshelf - 0 views

  •  
    good basic review of the immune system.
Nathan Goodyear

Telomere shortening and ageing of the immune system | Mendeley - 0 views

  • The immune system is highly sensitive to shortening of telomeres
  • they can up-regulate telomerase, the telomere extending enzyme
  • In ageing immune system adaptive immunity deteriorates because of a progressive decline of naive T and B cells and decrease of absolute numbers of T and B lymphocytes
  •  
    the immune system is very sensitive to shortening of telomere length. This change in the immune system can be a pivotal role in disease development
Nathan Goodyear

VITAMIN A, INFECTION, AND IMMUNE FUNCTION* - Annual Review of Nutrition, 21(1):167 - 0 views

  • Vitamin A deficiency impairs innate immunity
  • Vitamin A is also required for adaptive immunity
  •  
    Vitamin A very important in proper immune development and immune function
Nathan Goodyear

Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside - 0 views

  • MAF precursor activity has also been lost or reduced after Gc-globulin treatment in some cancer cell lines
  • This appears to result from the deglycosylated ɑ-N-acetylgalactosaminidase (nagalase) secreted from cancerous cells
  • Nagalase has been detected in many cancer patients, but not in healthy individuals
  • ...31 more annotations...
  • Studies have shown that the production of nagalase has a mutual relationship with Gc-MAF level and immunosuppression
  • It has been demonstrated that serum levels of nagalase are good prognosticators of some types of cancer
  • The nagalase level in serum correlates with tumor burden and it has been shown that Gc-MAF therapy progresses, nagalase activity decreases
  • It has been shown that Gc-MAF can inhibit the angiogenesis induced by pro-inflammatory prostaglandin E1
  • The effect of Gc-MAF on chemotaxis or activation of tumoricidal macrophages is likely the main mechanism against angiogenesis.
  • Administration of Gc-MAF stimulates immune-cell progenitors for extensive mitogenesis, activates macrophages and produces antibodies. “This indicates that Gc-MAF is a powerful adjuvant for immunization.”
  • Cancer cell lines do not develop into tumor genes in mouse models after Gc-MAF-primed immunization (29-31) and the effect of Gc-MAF has been approved for macrophage stimulation for angiogenesis, proliferation, migration and metastatic inhibition on tumors induced by MCF-7 human breast cancer cell line
  • The protocol included: "a high dose of second-generation Gc-MAF (0.5 ml) administered twice a week intramuscularly for a total of 21 injections.”
  • Yamamoto et al. showed that the administration of Gc-MAF to 16 patients with prostate cancer led to improvements in all patients without recurrence
  • Inui et al. reported that a 74-year-old man diagnosed with prostate cancer with multiple bone metastases was in complete remission nine months after initiation of GcMAF therapy simultaneously with hyper T/NK cell, high-dose vitamin C and alpha lipoic acid therapy
  • It has also been approved for non-neoplastic diseases such as autism (41), multiple sclerosis (42, 43), chronic fatigue syndrome (CFS) (40), juvenile osteoporosis (44) and systemic lupus erythematous (45).
  • Gc-MAF has been verified for use in colon, thyroid (38), lung (39), liver, thymus (36), pancreatic (40), bladder and ovarian cancer and tongue squamous carcinoma
  • Prostate, breast, colon, liver, stomach, lung (including mesothelioma), kidney, bladder, uterus, ovarian, head/neck and brain cancers, fibrosarcomas and melanomas are the types of cancer tested thus far
  • weekly administration of 100 ng Gc-MAF to cancer at different stages and types showed curative effects at different follow-up times
  • this treatment has been suggested for non-anemic patients
  • Studies have shown that weekly administration of 100 ng Gc-MAF to cancer patients had curative effects on a variety of cancers
  • Because the half-life of the activated macrophages is approximately one week, it must be administered weekly
  • In vivo weekly intramuscular administration of Gc-MAF (100 ng) for 16-22 weeks was used to treat patients with breast cancer
  • individuals harboring different VDR genotypes had different responses to Gc-MAF and that some genotypes were more responsive than others
  • Administration of Gc-MAF for cancer patients exclusively activates macrophages as an important cell in adaptive immunity
  • Gc-MAF supports humoral immunity by producing, developing and releasing large quantities of antibodies against cancer. Clinical evidence from a human model of breast cancer patients supports this hypothesis
  • There is also evidence that confirms the tumoricidal role of Gc-MAF via Fc-receptor mediation
  • It is likely that the best therapeutic responses will be observed when the nutritional and inflammatory aspects are taken together with stimulation of the immune system
  • it should be noted that no harmful side effects of Gc-MAF treatment have been reported, even when it was successfully administered to autistic children
  • The natural activation mechanism of macrophages by Gc-MAF is so natural and it should not have any side effects on humans or animal models even in cell culture
  • Besides the Gc-MAF efficacy on macrophage activity, it can be a potential anti-angiogenic agent (28) and an inhibitor of the migration of cancerous cells in the absence of macrophages (47).
  • Activating or modifying natural killer cells, dendritic cells, DC, CTL, INF and IL-2 have all been recommended for cancer immunotherapy
  • It has been reported that nagalase cannot deglycosylate Gc-MAF as it has specificity for Gc globulin alone
  • inflammation-derived macrophage activation with the participation of B and T lymphocytes is the main mechanism
  • macrophages highly-activated by the addition of Gc-MAF can show tumoricidal activity
  • Previous clinical investigations have confirmed the efficacy of Gc-MAF. In addition to activating existing macrophages, Gc-MAF is a potent mitogenic factor that can stimulate the myeloid progenitor cells to increase systemic macrophage cell counts by 40-fold in four days
  •  
    great review on Gc-MAF in cancer.  An increase in nagalase blocks Gc-protein to Gc-MAF activity leaving the host immune system compromised.
Nathan Goodyear

Intraperitoneal Oxidative Stress in Rabbits with Papillomavirus-Associated Head and Neck Cancer Induces Tumoricidal Immune Response That Is Adoptively Transferable | Clinical Cancer Research - 0 views

  •  
    O2-O3 triggers tumoricidal immune response after application of a repetitive highly oxidative stimulus by insufflation of a medical O3/O2 gas mixture into the peritoneal cavity in animal model. O3/O2-PP treatment, indicates an enhanced activation of the innate and adaptive arms of the immune system, implicating a role of activated TILs In the anti cancer effects of the O3. Interestingly, COX2 expression was decreased.
Nathan Goodyear

Therapeutic hyperthermia: The old, the new, and the upcoming - Critical Reviews in Oncology / Hematology - 1 views

  • not well understood, but it is felt to be a combination of both heat-induced necrosis and of protein inactivation (e.g., repair enzymes) as opposed to DNA damage
  • alterations in tumor cytoskeletal and membrane structures, which disrupt cell motility and intracellular signal transduction
  • A common explanation for HT-enhancement of RT and CT involves inhibition of homologous recombination repair of double-strand DNA breaks, preventing cells from repairing sub-lethal damage
  • ...15 more annotations...
  • it does appear to inhibit rejoining of RT-induced DNA breaks more than is commonly observed after RT alone
  • HT damages cells and enhances RT and CT sensitivity as a function of both temperature and duration of treatment
  • as temperature or duration increase, the rate of cell killing also increases
  • At temperatures above 42 °C, tumor vasculature is damaged, resulting in decreased blood flow
  • Cancer cells are particularly vulnerable to heating; in vivo studies have shown that temperatures in the range of 40–44 °C cause more selective damage to tumor cells
  • cancerous blood vessels are chaotic, leaky, and inefficient
  • selective cytotoxic effect on tumor cells include inhibition of key cancer cell-signaling pathways such as AKT, inducing apoptosis, suppression of cancer stem cell proliferation, and others
  • increase in immunological attacks against tumors after HT, which were believed to be achieved through activation of HSPs and subsequent modulation of the innate and adaptive immune responses against tumor cells
  • HT does lead to activation of the immune system and HSP-induced cell death through modification of the tumor cell surface
  • These HSPs and tumor antigens are taken up by dendritic cells and macrophages and go on to induce specific anti-tumor immunity
  • In vivo studies demonstrate HT-enhancement of NK cell activity, and HT has been shown to increase neutrophilic granulocytes with anti-tumor activity
  • it has become increasingly clear that HT results in immune stimulation, through both direct heat-mediated cell killing as well as innate and adaptive immune system modulation
  • The term hyperthermia is used in this review to refer to heating within the clinically accepted range of 40–45 °C
  • temperatures above 42.5–43 °C the exposure time can be halved with each 1 °C increase while maintaining equivalent cell killing
  • gradual heating at 43 °C for 1 h worked through an apoptotic pathway
  •  
    Comprehensive review of hyperthemic therapy.
Nathan Goodyear

Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans - 0 views

  •  
    beta glucans stimulate both innate and adaptive immune system to attack tumor cells.
Nathan Goodyear

Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity « Full Text Reports… - 0 views

  • GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function.
  •  
    Gluten sensitivity a result of the innate immunity
Nathan Goodyear

The Role of Vitamin C in Human Immunity and Its Treatment Potential Against COVID-19: A Review Article - PMC - 0 views

  • vitamins A, B, C, E, B6, B12, folate, zinc, iron, copper, and selenium
  • White blood cells, including neutrophils and monocytes, accumulate concentrations of vitamin C up to 100 times greater than that of plasma
  • Vitamin C is a crucial component of both the innate (nonspecific) and adaptive (specific) portions of the immune system
  • ...52 more annotations...
  • play a role during the initial chemotactic response of neutrophils shortly after infection
  • following vitamin C supplementation, a 20% increase in neutrophil chemotactic activity was observed
  • also contributes to the phagocytosis and killing of microbes by neutrophils
  • low levels of vitamin C occurring in high-stress situations
  • maturation, proliferation, and viability of T cells have all been shown to be upregulated by the presence of normal physiologic concentrations of vitamin C
  • Vitamin C has been shown to directly affect the number of Igs released from B cells
  • vitamin C among healthy young adult males showed a significant increase in serum levels of IgA, IgG, and IgM
  • effects of high-dose vitamin C on cytokine levels in cancer patients, finding decreased amounts of the cytokines Interleukin-1 alpha (IL-1 alpha), IL-2, IL-8, and tumor necrosis factor-alpha (TNF-alpha) after high-dose vitamin C infusion
  • when vitamin C was supplemented with vitamin E in healthy adults, it increased the production of cytokines IL-1 beta and TNF-alpha
  • vitamin C acts to modulate the levels of cytokines to prevent them from fluctuating in either direction
  • vitamin C also acts as an important antioxidant to the cells of the immune system.
  • human leukocytes, neutrophils, in particular, possess the ability to transport the oxidized form of vitamin C across its membrane to use as a defense mechanism against ROS produced during an immune response
  • Vitamin C also can recover other endogenous antioxidants in the body such as vitamin E and glutathione, returning them to their active state
  • vitamin C can decrease the activation of NF-kB
  • can reduce harmful nitrogen-based compounds such as N-nitrosamines and nitrosamides, both of which are carcinogenic 
  • subjects taking oral vitamin C supplementation saw a 60% to 90% reduction in oxidative stress compared to a placebo control
  • subjects infused with vitamin C alone had a 516% increase in glutathione levels compared to subjects not provided the 500 mg daily supplementation
  • hydroxylating proline and lysine
  • mature and stabilize the tissue of a healing wound
  • healing
  • oral surgery
  • improved soft tissue regeneration
  • vitamin C increases the mRNA levels of type I and type III collagen in the human dermis
  • Studies have demonstrated that those with low levels of vitamin C are at a significantly higher risk of respiratory infection compared to those with normal levels
  • viral cold duration was reduced by about 8% in adults and 13.5% in children using prophylactic daily doses of 200 mg of oral vitamin C
  • prophylactically supplementing vitamin C decreases the risk of infection with respiratory viruses such as the common cold
  • combined with probiotics, oral vitamin C supplementation showed a 33% decrease in the incidence of respiratory tract infections in preschool-age children [
  • high-dose oral supplementation of vitamin C managed to prevent or reduce symptoms if taken before or just after the onset of cold- or flu-like symptoms
  • improvements in oxygen saturation and decreased IL-6 levels (a marker of inflammation) in the treatment group compared to the control group
  • 8 g doses of oral vitamin C
  • there is a negative correlation between age and serum levels of vitamin C
  • Patients with COVID-19 will likely also experience depletion in serum levels of vitamin C as a direct result of the upregulation of the immune system to combat the infection
  • Colunga et al. suggested that oral vitamin C can be combined with oral Quercetin, an antiviral flavonoid, to improve Quercetin’s ability to block viral membrane fusion of SARS-CoV-2
  • high doses of 1-2 g/day of oral vitamin C could prevent other upper respiratory infections
  • It appears vitamin C supplementation by itself does not provide a striking benefit in preventing COVID-19 infection for those without a deficiency
    • Nathan Goodyear
       
      Flawed statement. What is normal? Vitamin D. Many variables effect levels and dose, including the two compartment kinetics and absorption.
  • Hiedra et al. were able to show decreases in inflammatory biomarkers, such as D-dimer and ferritin
  • some evidence to support that prophylactic use of vitamin C helps reduce the severity of respiratory infection symptoms once a subject has already been infected
  • oral vitamin C in combination with zinc provided the largest amount of antibody titers 42 days
  • linear relationship between days of vitamin C therapy and survival duration
  • other studies were unable to find any definitive improvement concerning therapy with vitamin C
    • Nathan Goodyear
       
      Either these studies are designed to fail or the authors are lacking some basic understanding of pharmacokinetics and pharmacodynamics with vitamin C.
  • Fowler et al. aimed to see if a high-dose vitamin C infusion would benefit patients affected by ARDS, but they were unable to conclude that vitamin C infusion, compared to a placebo, could decrease vascular inflammation and damage in ARDS
    • Nathan Goodyear
       
      At what dose, duration, frequency???
  • in a sample of 67 COVID-19-positive ICU patients, 82% of them displayed plasma vitamin C levels below 0.4 mg/dL
    • Nathan Goodyear
       
      They are kind of make the point from my earlier note.
  • continuous vitamin C infusion at a rate of 60 mg/kg/day for four days decreased the need for mechanical ventilation and vasopressor use but had no significant effect on overall mortality
    • Nathan Goodyear
       
      Again, designed to fail or ignorance designed the study which failed
  • Carr et al. suggested that high-dose IV vitamin C is most effective when treating sepsis as septic patients receiving the normal daily recommendations through diet still showed decreased vitamin C levels
  • High-dose IV vitamin C treatment has also been shown by Kakodkar et al. to decrease syndecan-1, an endothelial glycocalyx that contributes to mortality in septic patients
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • combined with hydrocortisone and thiamine, septic patients treated with 1.5 g of IV vitamin C every six hours showed a distinct decrease in their SOFA scores and none of the patients treated developed organ failure
  • reduced overall mortality
  • reduced overall mortality
  • propose the use for high-dose vitamin C to aid in the treatment of septic shock-induced hypotension
  • treatment of severe sepsis using a high dose (up to 200 mg/kg/day) of IV vitamin C was explored in phase I, a double-blind, randomized, placebo-controlled trial by Fowler et al. [75]. Their findings included a reduction in SOFA scores and decreased vascular injury compared to a placebo control group, all while showing minimal adverse side effects
    • Nathan Goodyear
       
      High dose here is laughable. Again, duration and frequency also.
  • Maintaining a daily intake of 75 and 100 mg for men and women, respectively, as recommended by the U.S. Institute of Medicine
    • Nathan Goodyear
       
      This recommendation is FRANK IGNORANCE
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

Orally Administered Particular β-Glucan Modulates Tumor-capturing Dendritic Cells and Improves Anti-tumor T Cell Responses in Cancer - 0 views

  •  
    Beta glucans have both an innate and adaptive effect to enhance the environment in/and around tumor.  Beta glucans stimulate the immune system signaling to attack tumors.
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutrition & Metabolism | Full Text - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Cutting Edge: IL-12 Induces CD4+CD25− T Cell Activation in the Presence of T Regulatory Cells | The Journal of Immunology - 0 views

  • Whereas IL-12 instigates Th1 immune responses, CD4+CD25+ regulatory T cells (Treg)3 actively restrain them
  • Following engagement of their TCR, Treg suppress the proliferation of conventional CD4+CD25− T responder cells in vitro
  • Furthermore, they inhibit the development of CD4+ T cell responses against alloantigens, tumor, microbial, and self-Ags in vivo.
  • ...1 more annotation...
  • Treg act to prevent spontaneous autoimmunity and to limit collateral damage to healthy tissues during adaptive immunity. However, these cells also have the potential to sabotage protective antimicrobial responses
  •  
    Great T cell activiation review: Il-2 stimulates NK cells primarily release from TH1 cells and T cytotoxic lymphocytes are under the control of IL-12 released primarily from dendritic cells.  Inflammatory cytokines in the presence of Treg to stimulate CD4+CD25- T cell activation.
Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study - 0 views

  • Rigvir is a 2 ml frozen solution
  • ECHO-7 virus strain, Picornaviridae family, Enterovirus genus, Enteric Cytopathic Human Orphan (ECHO) type 7, group IV, positive-sense single-stranded RNA virus
  • a few side effects were reported, for example subfebrile temperature (37.5°C for a couple of days), pain in the tumour area, sleepiness and diarrhoea
  • ...12 more annotations...
  • In this retrospective study, however, there was no record of any untoward side effect from Rigvir treatment or its discontinuation
  • Early observations of tumour regressions after virus infections have been published starting from the late 19th century
  • The present results show that in substage IB, IIA, IIB and IIC melanoma patients, Rigvir administration after surgery significantly (P<0.05) prolongs survival compared with patients who were managed according to current published guidelines
  • no value higher than grade 2 was recorded in Rigvir-treated patients. This is in contrast to most other cancer therapies, where grades 3 and 4 are frequently observed
  • Administration of virus induces the formation of neutralising antibodies that might potentially influence the efficiency of Rigvir
  • In 94 healthy adult participants tested, the titres were found to be low (1 : 20 to 1 : 62) 39,40. When tested in 155 adult cancer patients who had not been treated with Rigvir, neutralising antibodies against ECHO-7 were detected in ∼50% of the patients
  • the presence of ECHO-7 antibodies was shown to increase with age in children and level off to a plateau of around 75% in adults
  • Rigvir is an immunomodulator that affects both the humoral, antibody-mediated, and the cellular immune systems
  • neutralising antibodies do not affect efficacy when local or regional administration is used
  • it reduces the viability of melanoma, as well as pulmonary, gastric, pancreatic, bone, and breast cancer cell cultures
  • It is oncolytic in melanoma and rectum cancer patients
  • shown to improve the 5-year survival in rectum cancer patients
  •  
    RIGVIR shown to improve survival against standard therapy in stage IB, IIA, IIB, and IIC in malignant melanoma patients in retrospective study. Side effects are minimal. Neutralizing antibodies are an area to watch that likely effects individual outcome beyond that of the type of cancer
Nathan Goodyear

Activation of NK cells by extracellular heat shock protein 70 through induction of NKG2D ligands on dendritic cells - 0 views

  • Heat shock proteins (HSPs) are intracellular molecular chaperones that play essential roles in facilitating protein folding
  • their ability to interact with APCs and to chaperone antigenic peptides for cross-presentation to MHC class I and class II molecules on APC
  • vaccination with HSP70 was associated with increased T cell, as well as NK cell, activity in patients with CML
  • ...6 more annotations...
  • HSP70 did not activate NK cells directly. Instead, HSP70 induced the expression of an NKG2D ligand MICA on DCs, which then activated NK cells in an NKG2D-dependent manner.
  • DCs are the most powerful professional antigen presenting cells (APCs) that are instrumental in processing antigens and orchestrating antigen-specific adaptive immunity and tolerance
  • NK cells and DCs can functionally interact with each other both in vitro and in vivo
  • autologous HSP70 could stimulate significant IFN-γ production
  • The magnitude of the IFN-γ response was different from patient to patient and correlated with the number of functional NK cells
  • In addition, 10 out of 14 patients had significantly increased IFN-γ producing cells in the peripheral blood after HSP70 vaccinations, which is again in line with increased NK cell activity as reported in our original study in these patients
  •  
    great review of the relationship between heat shock proteins and NK cells.
1 - 20 of 20
Showing 20 items per page