IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
IR is known to induce EMT in vitro
p53 is activated in response to IR-induced DNA damage
IR paradoxically also promotes tumour recurrence and metastasis
DNA double-strand breaks (DSBs)
cancer cells undergoing EMT acquire invasive and metastatic properties
changes in the tumour microenvironment (TME)
IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
IR is known to induce stemness and metabolic alterations in cancer cells
transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
Loss of E-cadherin is considered a hallmark of EMT
IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
ROS are known to play an important role in IR-induced EMT
High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
NF-κB signalling that promotes cell migration
ROS promote EMT to allow cancer cells to avoid hostile environments
HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
IR induces vascular damage that causes hypoxia
ROS is implicated in IR-induced HIF-1 activation
IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
TGF-β signalling has been shown to play a crucial role in IR-induced EMT
AP-1 transcription factor is involved in IR-induced TGF-β1 expression
Wnt/β-catenin signalling is also implicated in IR-induced EMT
Notch signalling is known to be involved in IR-induced EMT
IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
ROS and RNS are also implicated in IR-induced EGFR activation
IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
some CSC subpopulations arise independently of EMT
IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
metabolic reprogramming
HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
metabolic reprogramming
tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
occurring within the same tumour
CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
mitochondrial function is crucial for maintaining CSC functionality
cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
HIF-1 then enhances glycolysis
CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
STAT3 has been implicated in EMT-induced metabolic changes as well
TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
EMT, invasion, metastasis, and stemness
pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
LDH catalyses the bidirectional conversion of lactate to pyruvate
High levels of LDHA are positively correlated with the expression of EMT and CSC markers
IR has been shown to induce metabolic changes in cancer cells
IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
Lactate can activate latent TGF-
lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
intrinsic immunogenicity or induce tolerance
cancer immunoediting’
three phases: 1) elimination, 2) equilibrium, and 3) escape.
The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
IR-induced Snail increases MMP-2 expression to promote EMT
Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
Metabolic alterations
oncogenic metabolism
elicit various changes in the TME
Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
Great diagram of the pH in/around solid tumors. Cancer exists in an obvious hypoxic environment which favors the HIF-1alpha which favors lactate production which drops the pH in the tumor extracellular environment effecting chemoresistance, radioresistance, angiogenesis, invasion, aggressiveness, metastasis, immune evasion...
upregulation of glycolysis in cancer cells, with subsequent exhaustion of glucose in the microenvironment, leading to the death of T cells from starvation
PD‐L1 expression promotes the production of interleukin 10, a cytokine involved in the death of activated T cells
PD‐L1 expression in tumor tissue might lead to T‐cell exhaustion and unresponsiveness