Skip to main content

Home/ Dr. Goodyear/ Group items tagged macronutrient

Rss Feed Group items tagged

Nathan Goodyear

Nutritional Modulation of Insulin Resistance - 0 views

  • Five branched chain and aromatic amino acids (isoleucine, leucine, valine, tyrosine, and phenylalanine) showed significant associations with future diabetes
  • there is increasing evidence that longer term high-protein intake may have detrimental effects on insulin resistance [68, 117–123], diabetes risk [69], and the risk of developing cardiovascular disease
  • high-protein and the high GI diets significantly increased markers of low-grade inflammation
  • ...5 more annotations...
  • significant and clinically relevant worsening of insulin sensitivity with an isoenergetic plant-based high-protein diet
  • healthy humans that are exposed to amino acid infusions rapidly develop insulin resistance
  • longer term high-protein intake has been shown to result in whole-body insulin resistance [68, 118], associated with upregulation of factors involved in the mammalian target of rapamycin (mTOR)/S6K1 signalling pathway [68], increased stimulation of glucagon and insulin within the endocrine pancreas, high glycogen turnover [118] and stimulation of gluconeogenesis [68, 118].
  • it was recently shown in a large prospective cohort with 10 years followup that consuming 5% of energy from both animal and total protein at the expense of carbohydrates or fat increases diabetes risk by as much as 30% [69]. This reinforces the theory that high-protein diets can have adverse effects on glucose metabolism.
  • Another recent study showed that low-carbohydrate high-protein diets, used on a regular basis and without consideration of the nature of carbohydrates or the source of proteins, are also associated with increased risk of cardiovascular disease [70], thereby indicating a potential link between high-protein Western diets, T2DM, and cardiovascular risk.
  •  
    macronutrient intake and effect on glucose regulation and thus metabolism.
Nathan Goodyear

The Postprandial Rise in Plasma Cortisol in Men Is Mediated by Macronutrient-Specific S... - 0 views

  •  
    Macronutrients provide some difference in cortisol production.  Carbs, in this study, were found to increase adrenal and extra-adrenal equally, whereas fats/proteins stimulated adrenal cortisol more than extra-adrenal.
Nathan Goodyear

Alternatives for macronutrient intake and chronic disease: a comparison of the OmniHear... - 0 views

  •  
    Great review of the macronutrient make up of many popular diets
Nathan Goodyear

The post-prandial rise in plasma cortisol in men is mediated by macronutrient-specific ... - 0 views

  •  
    Article finds that carbohydrate meals cause increase in extra-adrenal cortisol more than protein and fat.  This is via 11beta-HSD1.
Nathan Goodyear

Dietary Macronutrient Content Alters Cortisol Metabolism Independently of Body Weight C... - 0 views

  •  
    Extra-adrenal cortisol production is increased by 11-Beta-HSD1 via low Carb diet.  This is counter to that seen in mice studies.  The fat content of the diet could explain this.  This study looked at men.
Nathan Goodyear

What dietary modification best improves insulin sensitivity and why? - Weickert - 2012 ... - 0 views

  • cereal-fibre intake, under isoenergetic conditions, improves whole-body IR in both short-term and more prolonged studies
  •  
    Great review of macronutrients and insulin resistance.  Caloric reduction plus exercise still the best method to reduce insulin resistance.   Long-term high protein intake increases insulin resistance.
Nathan Goodyear

Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome - 0 views

  • Activation of the innate immune system controls macronutrient metabolism
  • the innate immune response is the first line of defense against invading pathogens, wherein highly conserved pathogen-associated molecular patterns (PAMPs) are recognized by cognate pattern recognition receptors (PRRs
  • many studies have supported the idea that cytokine signaling directly promotes insulin resistance
  • ...10 more annotations...
  • innate immune system may be causally linked to obesity
  • adipose tissue contains a substantial population of macrophages, and macrophage-driven adipose inflammation contributes significantly to the pathogenesis of obesity
  • Collectively, activation of the innate immune system is strongly associated with ASCVD, insulin resistance, and obesity, and recent evidence suggests that much of this association can be traced to a unique family of PRRs known as TLRs
  • TLRs are a family of type I transmembrane receptors, currently thought to comprise at least 13 members in mammals, that specifically recognize a variety of microbial PAMPs and trigger host cellular responses
  • Free SFAs have indeed been demonstrated to elicit TLR4-dependent and TLR2-dependent responses in several cell types.
  • Endogenous SFAs released from adipocytes activate cocultured macrophages via TLR4 [18], indicating the potential for cellular crosstalk in adipose tissue. Collectively, there is a growing body of evidence that SFAs promote, whereas long chain PUFA antagonize, TLR4-dependent and TLR2-dependent signaling in multiple cell models
  • In an elegant study, Shi et al. [16] demonstrated that SFAs activate TLR4-dependent signaling in both macrophages and adipocytes, and mice lacking TLR4 are protected against insulin resistance driven by intravenous lipid infusion
  • In addition to effects in macrophages and adipocytes, SFAs can activate TLR4 in the hypothalamus, which triggers a central inflammatory response that results in resistance to anorexigenic signals
  • endogenous SFAs can indeed promote innate immunity and inflammatory disease
  • This finding strongly supports the work of Hwang and coworkers [19–22] demonstrating that ω-3 PUFAs can effectively counteract SFA-induced TLR4 activation in cultured macrophages and dendritic cells.
  •  
    high dietary fatty acids linked to metabolic syndrome through TLR.
Nathan Goodyear

http://care.diabetesjournals.org/content/early/2013/02/07/dc12-1912.full.pdf - 0 views

  •  
    Study finds that higher protein to carbohydrate intake has a positive effect on inflammatory cytokines, oxidative stress, improves insulin sensitivity and improves Beta cell function in premenopausal, non diabetic obese women.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

Reevaluation of the protein requirement in young men with the indicator amino acid oxid... - 0 views

  • the mean and population-safe protein requirements were estimated to be 0.93 and 1.2 g · kg−1 · d
  • diet containing 0.90 g · kg−1 · d−1 was at or above physiologic protein requirements for sedentary men
  • The current EAR recommendation and RDA for protein are 0.66 and 0.80 g · kg−1 · d−1, respectively. We believe that these recommendations are tentative because no long-term studies have suggested that these values would maintain nitrogen balance along with lean body mass, muscle mass, serum protein concentrations, immunity, functional capacity etc
  • ...2 more annotations...
  • a series of long-term balance studies (67-69) showed that intake of the proposed safe allowance of 0.57 g (70) egg protein resulted in negative nitrogen balance, loss of lean body mass, and deteriorating serum protein and transferase values unless additional energy or nonessential nitrogen was supplied
  • The results of the present study suggest that the current EAR recommendations (0.66 g · kg−1 · d−1) and RDA (0.80 g · kg−1 · d−1) for protein are underestimated at 29% and 33%, respectively
  •  
    study looked at protein requirements in 8 "healthy" men.  This study pointed to 1.2 g/kg/day as an appropriate daily dietary protein intake for healthy men.  This far exceeds levels per RDA.
1 - 12 of 12
Showing 20 items per page