Skip to main content

Home/ Dr. Goodyear/ Group items tagged adipogenesis

Rss Feed Group items tagged

Nathan Goodyear

Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to... - 0 views

  •  
    Dose dependent vitamin D impact on fat.  Low vitamin D concentrations associated with fat adipogenesis.  Higher vitamin D concentrations inhibited adipogenesis.
Nathan Goodyear

A Six Months Exercise Intervention Influences the Genome-wide DNA Methylation Pattern i... - 0 views

  • In skeletal muscle, HDAC4 has been found to be exported from the nucleus during exercise, suggesting that removal of the transcriptional repressive function could be a mechanism for exercise adaptation [50]. For HDAC4, we observed increased levels of DNA methylation and a simultaneous decrease in mRNA expression in adipose tissue in response to the exercise intervention. Additionally, the functional experiments in cultured adipocytes suggested increased lipogenesis when Hdac4 expression was reduced
  • NCOR2 also exhibited increased levels of DNA methylation and a simultaneous decrease in mRNA expression in adipose tissue in response to the exercise intervention, and furthermore we observed increased lipogenesis when Ncor2 expression was down regulated in the 3T3-L1 cell line. NCOR2 is a nuclear co-repressor, involved in the regulation of genes important for adipogenesis and lipid metabolism, and with the ability to recruit different histone deacetylase enzymes, including HDAC4
  •  
    Study finds 6 month exercise program in men induced epigenetic change via DNA methylation of CPG islands in adipose cells effecting metabolism and altering obesity and type II diabetes risk.  The study looked at 2 genes: HDAC4 and NCOR2 and found that exercise decreased expression via methylation altering adipogenesis and lipid metabolism.
Nathan Goodyear

Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57... - 0 views

  • Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism
  • curcumin, the major polyphenol in turmeric spice
  • curcumin suppression of angiogenesis in adipose tissue together with its effect on lipid metabolism in adipocytes may contribute to lower body fat and body weight gain
  • ...1 more annotation...
  • Our findings suggest that dietary curcumin may have a potential benefit in preventing obesity
  •  
    Curcumin useful in obesity
Nathan Goodyear

Testosterone: a metabolic hormone in health and disease - 0 views

  • E2 and the inflammatory adipocytokines tumour necrosis factor α (TNFα) and interleukin 6 (IL6) inhibit hypothalamic production of GNRH and subsequent release of LH and FSH from the pituitary
  • Leptin, an adipose-derived hormone with a well-known role in regulation of body weight and food intake, also induces LH release under normal conditions via stimulation of hypothalamic GNRH neurons
  • In human obesity, whereby adipocytes are producing elevated amounts of leptin, the hypothalamic–pituitary axis becomes leptin resistant
  • ...39 more annotations...
  • there is evidence from animal studies that leptin resistance, inflammation and oestrogens inhibit neuronal release of kisspeptin
  • Beyond hypothalamic action, leptin also directly inhibits the stimulatory action of gonadotrophins on the Leydig cells of the testis to decrease testosterone production; therefore, elevated leptin levels in obesity may further diminish androgen status
  • Prostate cancer patients with pre-existing T2DM show a further deterioration of insulin resistance and worsening of diabetic control following ADT
  • ADT for the treatment of prostatic carcinoma in some large epidemiological studies has been shown to be associated with an increased risk of developing MetS and T2DM
  • Non-diabetic men undergoing androgen ablation show increased occurrence of new-onset diabetes and demonstrate elevated insulin levels and worsening glycaemic control
  • increasing insulin resistance assessed by glucose tolerence test and hypoglycemic clamp was shown to be associated with a decrease in Leydig cell testosterone secretion in men
  • The response to testosterone replacement of insulin sensitivity is in part dependent on the androgen receptor (AR)
  • Low levels of testosterone have been associated with an atherogenic lipoprotein profile, characterised by high LDL and triglyceride levels
  • a positive correlation between serum testosterone and HDL has been reported in both healthy and diabetic men
  • up to 70% of the body's insulin sensitivity is accounted for by muscle
  • Testosterone deficiency is associated with a decrease in lean body mass
  • relative muscle mass is inversely associated with insulin resistance and pre-diabetes
  • GLUT4 and IRS1 were up-regulated in cultured adipocytes and skeletal muscle cells following testosterone treatment at low dose and short-time incubations
  • local conversion of testosterone to DHT and activation of AR may be important for glucose uptake
  • inverse correlation between testosterone levels and adverse mitochondrial function
  • orchidectomy of male Wistar rats and associated testosterone deficiency induced increased absorption of glucose from the intestine
  • (Kelley & Mandarino 2000). Frederiksen et al. (2012a) recently demonstrated that testosterone may influence components of metabolic flexibility as 6 months of transdermal testosterone treatment in aging men with low–normal bioavailable testosterone levels increased lipid oxidation and decreased glucose oxidation during the fasting state.
  • Decreased lipid oxidation coupled with diet-induced chronic FA elevation is linked to increased accumulation of myocellular lipid, in particular diacylglycerol and/or ceramide in myocytes
  • In the Chang human adult liver cell line, insulin receptor mRNA expression was significantly increased following exposure to testosterone
  • Testosterone deprivation via castration of male rats led to decreased expression of Glut4 in liver tissue, as well as adipose and muscle
  • oestrogen was found to increase the expression of insulin receptors in insulin-resistant HepG2 human liver cell line
  • FFA decrease hepatic insulin binding and extraction, increase hepatic gluconeogenesis and increase hepatic insulin resistance.
  • Only one, albeit large-scale, population-based cross-sectional study reports an association between low serum testosterone concentrations and hepatic steatosis in men (Völzke et al. 2010)
  • This suggests that testosterone may confer some of its beneficial effects on hepatic lipid metabolism via conversion to E2 and subsequent activation of ERα.
  • hypogonadal men exhibiting a reduced lean body mass and an increased fat mass, abdominal or central obesity
  • visceral adipose tissue was inversely correlated with bioavailable testosterone
  • there was no change in visceral fat mass in aged men with low testosterone levels following 6 months of transdermal TRT, yet subcutaneous fat mass was significantly reduced in both the thigh and the abdominal areas when analysed by MRI (Frederiksen et al. 2012b)
  • ADT of prostate cancer patients increased both visceral and subcutaneous abdominal fat in a 12-month prospective observational study (Hamilton et al. 2011)
  • Catecholamines are the major lipolysis regulating hormones in man and regulate adipocyte lipolysis through activation of adenylate cyclase to produce cAMP
  • deficiency of androgen action decreases lipolysis and is primarily responsible for the induction of obesity (Yanase et al. 2008)
  • may be some regional differences in the action of testosterone on subcutaneous and visceral adipose function
  • proinflammatory adipocytokines IL1, IL6 and TNFα are increased in obesity with a downstream effect that stimulates liver production of CRP
  • observational evidence suggests that IL1β, IL6, TNFα and CRP are inversely associated with serum testosterone levels in patients
  • TRT has been reported to significantly reduce these proinflammatory mediators
  • This suggests a role for AR in the metabolic actions of testosterone on fat accumulation and adipose tissue inflammatory response
  • testosterone treatment may have beneficial effects on preventing the pathogenesis of obesity by inhibiting adipogenesis, decreasing triglyceride uptake and storage, increasing lipolysis, influencing lipoprotein content and function and may directly reduce fat mass and increase muscle mass
  • Early interventional studies suggest that TRT in hypogonadal men with T2DM and/or MetS has beneficial effects on lipids, adiposity and parameters of insulin sensitivity and glucose control
  • Evidence that whole-body insulin sensitivity is reduced in testosterone deficiency and increases with testosterone replacement supports a key role of this hormone in glucose and lipid metabolism
  • Impaired insulin sensitivity in these three tissues is characterised by defects in insulin-stimulated glucose transport activity, in particular into skeletal muscle, impaired insulin-mediated inhibition of hepatic glucose production and stimulation of glycogen synthesis in liver, and a reduced ability of insulin to inhibit lipolysis in adipose tissue
  •  
    Great review of the Hypogonadal-obesity-adipocytokine hypothesis.
Nathan Goodyear

Pathways of adipose tissue androgen metabolism in women: depot differences and modulati... - 0 views

  •  
    aromatase activity is concentrated in subcutaneous and visceral adipose tissue.
Nathan Goodyear

Benzyl butyl phthalate induces epigenetic stress to enhance adipogenesis in mesenchymal... - 0 views

  •  
    Phthalates effect genetic expression of fat prior to birth.  This is science, not politics.
Nathan Goodyear

PPARs, Obesity, and Inflammation - 0 views

  • increase of 61% within 10 years
  • Many of the inflammatory markers found in plasma of obese individuals appear to originate from adipose tissue
  • obesity is a state of chronic low-grade inflammation that is initiated by morphological changes in the adipose tissue.
  • ...19 more annotations...
  • secretion of MCP-1, resistin, and other proinflammatory cytokines is increased by obesity, the adipose secretion of the anti-inflammatory protein adiponectin is decreased
  • the peroxisome proliferators- activated receptor (PPAR) family are involved in the regulation of inflammation and energy homestasis
  • natural agonists, including unsaturated fatty acids and eicosanoids
  • PPARα also regulates inflammatory processes, mainly by inhibiting inflammatory gene expression
  • upregulation of COX-2 is seen in alcoholic steatohepatitis and nonalcoholic steatohepatitis and has been directly linked to the progression of steatosis to steatohepatitis, the inhibitory effect of PPARα on COX-2 may reduce steatohepatitis
  • PPARα agonists have a clear anorexic effect resulting in decreased food intake, evidence is accumulating that PPARα may also directly influence adipose tissue function, including its inflammatory status.
  • PPARα may govern adipose tissue inflammation in three different ways: (1) by decreasing adipocyte hypertrophy, which is known to be connected with a higher inflammatory status of the tissue [3, 11, 59], (2) by direct regulation of inflammatory gene expression via locally expressed PPARα, or (3) by systemic events likely originating from liver
  • PPARγ is considered the master regulator of adipogenesis
  • PPARγ2, which is adipose-tissue specific
  • Unsaturated fatty acids and several eicosanoids serve as endogenous agonists of PPARγ
  • two different molecular mechanisms have been proposed by which anti-inflammatory actions of PPARγ are effectuated: (1) via interference with proinflammatory transcription factors including STAT, NF-κB, and AP-1
  • and (2) by preventing removal of corepressor complexes from gene promoter regions resulting in suppression of inflammatory gene transcription
  • diet-induced obesity is associated with increased inflammatory gene expression in adipose tissue via adipocyte hypertrophy and macrophage infiltration
  • PPARγ is able to reverse macrophage infiltration, and subsequently reduces inflammatory gene expression
  • Inflammatory adipokines mainly originate from macrophages which are part of the stromal vascular fraction of adipose tissue [18, 19], and accordingly, the downregulation of inflammatory adipokines in WAT by PPARγ probably occurs via effects on macrophages
  • By interfering with NF-κB signaling pathways, PPARγ is known to decrease inflammation in activated macrophages
  • Recent data suggest that activation of PPARγ in fatty liver may protect against inflammation
  • PPARs may influence the inflammatory response either by direct transcriptional downregulation of proinflammatory genes
  • anti-inflammatory properties of PPARs in human obesity
  •  
    PPARs play pivotal in obesity.  PPARs appear to reduce the inflammatory cascade associated with obesity.  Downregulation of PPARs are associated with increased inflammation.  Natural PPARs include unsaturated fats and eicosanoids.
Nathan Goodyear

Access : Sulforaphane Inhibits Mitotic Clonal Expansion During Adipogenesis Through Cel... - 0 views

  •  
    sulphoraphane shown to arrest fat cell growth.  Sulphoraphane decreased PPAR-gamma and C/EBP-alpha expression as well as suppressing the cell growth cycle.  Obvious implications in weight loss
Nathan Goodyear

Curcumin-induced suppression of adipogenic differentiation is accompanied by ... - 0 views

  • Curcumin, a polyphenol found in the rhizomes of Curcuma longa, improves obesity-associated inflammation and diabetes in obese mice.
  • Curcumin also suppresses adipocyte differentiation
  • curcumin-induced suppression of adipogenesis
  •  
    Curcumin reduces inflammation associated with obesity and Diabetes
Nathan Goodyear

Nutrapharmacology of Tocotrienols for Metabol... [Curr Pharm Des. 2011] - PubMed - NCBI - 0 views

  • This review evaluates the effects of tocotrienols on the risk factors of metabolic syndrome using data from human, animal and in vitro studies. Tocotrienols improved lipid profiles and reduced atherosclerotic lesions, decreased blood glucose and glycated hemoglobin concentrations, normalized blood pressure, and inhibited adipogenesis.
  •  
    Tocotrienols, vitamin E, shown to improve metabolic syndrome risk factors.
Nathan Goodyear

European Journal of Clinical Nutrition - Effect of maternal n-3 long-chain polyunsatura... - 0 views

  • It is estimated that approximately 30% of children and adolescents in the United States and about 15–30% of those in Europe can be classified as overweight or obese
  • An increasing body of evidence now suggests that the nutritional environment encountered in utero and the early postnatal life may elicit permanent alterations in adipose tissue structure or function and, thereby, programme the individual’s propensity to later obesity
  • The composition of fatty acids in the Western diets has shifted toward an increasing dominance of n-6 relative to n-3 LCPUFAs over the past decades.9,10 This shift is also reflected in the fatty acid composition of breast milk
  • ...8 more annotations...
  • Evidence from animal studies suggests that the n-6 LCPUFA arachidonic acid promotes adipose tissue deposition, whereas the n-3 LCPUFAs eicosapentaenoic acid and docosahexaenoic acid seem to exert an opposite effect
  • Overall, no effect of supplementation was found on BMI in preschool (<5 years) and school-aged (6–12 years) children
  • increased adiposity, once established in childhood, tends to track into adulthood
  • Many studies have shown that even children <2 years with a high BMI are at increased risk of developing obesity later in life
  • The acquisition of fat cells early in life appears to be an irreversible process
  • Evidence from cell culture and animal studies suggests that early exposure to n-3 LCPUFAs has the potential to limit adipose tissue deposition mainly by attenuating the production of the arachidonic acid metabolite prostacyclin, which has been shown to enhance adipogenesis
  • In conclusion, there is currently no evidence to support that maternal n-3 LCPUFA supplementation during pregnancy and/or lactation exerts a favourable programming effect on adiposity status in childhood
  • our systematic review highlights that most of the trials reviewed were prone to methodological limitations
  •  
    Literature review finds limited data (9 studies, only 6 RCTs) of omega-3 during pregnancy.  No data was found that supported reduced obesity in children by mothers taking n-3 during pregnancy.  No harm was found either.  Data was sparse.   Take home: not enough data, no harm to pregnancy, children, thus if indications are present for mother, then recommend n-3.  At this point not studies have pointed to reduced obesity in children.
Nathan Goodyear

Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk - 0 views

  • Weight gain has been associated with a higher gut permeability
  • a high-fat diet promotes LPS absorption
  • higher concentrations of fatty acids impair intestinal barrier integrity
  • ...37 more annotations...
  • The starting point for innate immunity activation is the recognition of conserved structures of bacteria, viruses, and fungal components through pattern-recognition receptors
  • TLRs are PRRs that recognize microbe-associated molecular patterns
  • TLRs are transmembrane proteins containing extracellular domains rich in leucine repeat sequences and a cytosolic domain homologous to the IL1 receptor intracellular domain
  • The major proinflammatory mediators produced by the TLR4 activation in response to endotoxin (LPS) are TNFα, IL1β and IL6, which are also elevated in obese and insulin-resistant patients
  • Obesity, high-fat diet, diabetes, and NAFLD are associated with higher gut permeability leading to metabolic endotoxemia.
  • Probiotics, prebiotics, and antibiotic treatment can reduce LPS absorption
  • LPS promotes hepatic insulin resistance, hypertriglyceridemia, hepatic triglyceride accumulation, and secretion of pro-inflammatory cytokines promoting the progression of fatty liver disease.
  • In the endothelium, LPS induces the expression of pro-inflammatory, chemotactic, and adhesion molecules, which promotes atherosclerosis development and progression.
  • In the adipose tissue, LPS induces adipogenesis, insulin resistance, macrophage infiltration, oxidative stress, and release of pro-inflammatory cytokines and chemokines.
  • the gut microbiota has been recently proposed to be an environmental factor involved in the control of body weight and energy homeostasis by modulating plasma LPS levels
  • dietary fats alone might not be sufficient to cause overweight and obesity, suggesting that a bacterially related factor might be responsible for high-fat diet-induced obesity.
  • This was accompanied in high-fat-fed mice by a change in gut microbiota composition, with reduction in Bifidobacterium and Eubacterium spp.
  • n humans, it was also shown that meals with high-fat and high-carbohydrate content (fast-food style western diet) were able to decrease bifidobacteria levels and increase intestinal permeability and LPS concentrations
  • it was demonstrated that, more than the fat amount, its composition was a critical modulator of ME (Laugerette et al. 2012). Very recently, Mani et al. (2013) demonstrated that LPS concentration was increased by a meal rich in saturated fatty acids (SFA), while decreased after a meal rich in n-3 polyunsaturated fatty acids (n-3 PUFA).
  • this effect seems to be due to the fact that some SFA (e.g., lauric and mystiric acids) are part of the lipid-A component of LPS and also to n-3 PUFA's role on reducing LPS potency when substituting SFA in lipid-A
  • these experimental results suggest a pivotal role of CD14-mediated TLR4 activation in the development of LPS-mediated nutritional changes.
  • This suggests a link between gut microbiota, western diet, and obesity and indicates that gut microbiota manipulation can beneficially affect the host's weight and adiposity.
  • endotoxemia was independently associated with energy intake but not fat intake in a multivariate analysis
  • in vitro that endotoxemia activates pro-inflammatory cytokine/chemokine production via NFκB and MAPK signaling in preadipocytes and decreased peroxisome proliferator-activated receptor γ activity and insulin responsiveness in adipocytes.
  • T2DM patients have mean values of LPS that are 76% higher than healthy controls
  • LPS-induced release of glucagon, GH and cortisol, which inhibit glucose uptake, both peripheral and hepatic
  • LPSs also seem to induce ROS-mediated apoptosis in pancreatic cells
  • Recent evidence has been linking ME with dyslipidemia, increased intrahepatic triglycerides, development, and progression of alcoholic and nonalcoholic fatty liver disease
  • The hepatocytes, rather than hepatic macrophages, are the cells responsible for its clearance, being ultimately excreted in bile
  • All the subclasses of plasma lipoproteins can bind and neutralize the toxic effects of LPS, both in vitro (Eichbaum et al. 1991) and in vivo (Harris et al. 1990), and this phenomenon seems to be dependent on the number of phospholipids in the lipoprotein surface (Levels et al. 2001). LDL seems to be involved in LPS clearance, but this antiatherogenic effect is outweighed by its proatherogenic features
  • LPS produces hypertriglyceridemia by several mechanisms, depending on LPS concentration. In animal models, low-dose LPS increases hepatic lipoprotein (such as VLDL) synthesis, whereas high-dose LPS decreases lipoprotein catabolism
  • When a dose of LPS similar to that observed in ME was infused in humans, a 2.5-fold increase in endothelial lipase was observed, with consequent reduction in total and HDL. This mechanism may explain low HDL levels in ‘ME’ and other inflammatory conditions such as obesity and metabolic syndrome
  • It is known that the high-fat diet and the ‘ME’ increase intrahepatic triglyceride accumulation, thus synergistically contributing to the development and progression of alcoholic and NAFLD, from the initial stages characterized by intrahepatic triglyceride accumulation up to chronic inflammation (nonalcoholic steatohepatitis), fibrosis, and cirrhosis
  • On the other hand, LPS activates Kupffer cells leading to an increased production of ROS and pro-inflammatory cytokines like TNFα
  • high-fat diet mice presented with ME, which positively and significantly correlated with plasminogen activator inhibitor (PAI-1), IL1, TNFα, STAMP2, NADPHox, MCP-1, and F4/80 (a specific marker of mature macrophages) mRNAs
  • prebiotic administration reduces intestinal permeability to LPS in obese mice and is associated with decreased systemic inflammation when compared with controls
  • Cani et al. also found that high-fat diet mice presented with not only ME but also higher levels of inflammatory markers, oxidative stress, and macrophage infiltration markers
  • This suggests that important links between gut microbiota, ME, inflammation, and oxidative stress are implicated in a high-fat diet situation
  • high-fat feeding is associated with adipose tissue macrophage infiltration (F4/80-positive cells) and increased levels of chemokine MCP-1, suggesting a strong link between ME, proinflammatory status, oxidative stress, and, lately, increased CV risk
  • LPS has been shown to promote atherosclerosis
  • markers of systemic inflammation such as circulating bacterial endotoxin were elevated in patients with chronic infections and were strong predictors of increased atherosclerotic risk
  • As a TLR4 ligand, LPS has been suggested to induce atherosclerosis development and progression, via a TLR4-mediated inflammatory state.
  •  
    Very nice updated review on Metabolic endotoxemia
1 - 12 of 12
Showing 20 items per page