Skip to main content

Home/ Dr. Goodyear/ Group items tagged Redox

Rss Feed Group items tagged

Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeu... - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
Nathan Goodyear

Glutathione Redox Regulates Airway Hyperresponsiveness and Airway Inflammation in Mice ... - 0 views

  • γ-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-γ.
  • γ-GCE suppressed eosinophils infiltration
  • γ-GCE directly inhibited chemokine-induced eosinophil chemotaxis
  • ...10 more annotations...
  • these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by γ-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.
  • Bronchial asthma is a typical helper T cell type 2 (Th2) disease
  • Through the release of Th2 cytokines, such as IL-4, IL-5, and IL-13, orchestrate the recruitment and activation of the primary effector cells of the allergic response: the mast cells and the eosinophils
  • Glutathione is the most abundant nonprotein sulfhydryl compound in almost all cells. This tripeptide plays a significant role in many biological processes. It also constitutes the first line of the cellular defense mechanism against oxidative injury along with SOD, ascorbate, vitamin E, and catalase, and is the major intracellular redox buffer in ubiquitous cell types
  • We have shown that glutathione redox status, namely the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in murine antigen-presenting cells (APC) plays a central role in determining which of the reductive and oxidative APC predominate during immune status, and the balance between reductive and oxidative APC regulates Th1/Th2 balance through production of IL-12
  • we have also shown that exposure of human alveolar macrophages to the Th1 cytokine IFN-γ or the Th2 cytokine IL-4 either increases or decreases the GSH/GSSG ratio, respectively, which regulates Th1/Th2 balance through IL-12 production
  • the ability to generate a Th1 or Th2 type response has turned out to depend not only on T cells but also on the intracellular glutathione redox status of APC
  • Th1 cytokine IFN-γ and Th2 cytokine IL-4 increases and decreases the GSH/GSSG ratio, respectively, and that this ratio influences LPS-induced IL-12 production from alveolar macrophages
  • the ability to generate a Th1 or Th2 response is dependent on glutathione redox status of APC
  • administration of γ-GCE elevates GSH level and GSH/GSSG ratio in the lung, and ameliorates AHR and eosinophilic airway inflammation by altering the Th1/Th2 balance and suppressing chemokine production and eosinophil migration in a mouse asthma model
  •  
    glutathione redox reaction plays an important role in the ability to balance Th1 and Th2 and thus disease potential i.e. asthma as this study example.  
Nathan Goodyear

Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer - 0 views

  • Previous studies from our laboratory have demonstrated that pharmacological ascorbate is cytotoxic to pancreatic cancer cells while normal cells are resistant
  • Ascorbate-induced cytotoxicity is mediated by the formation of H2O2 during the oxidation of ascorbate
  • the combination of IR + ascorbate increased the concentration of intracellular H2O2
  • ...17 more annotations...
  • Under steady-state conditions, intracellular GSH is maintained at millimolar concentrations, which keeps cells in a reduced environment and serves as the principal intracellular redox buffer when cells are subjected to an oxidative stressor including H2O2 (26). Glutathione peroxidase (GPx) activity catalyzes the reduction of H2O2 to water with the conversion of GSH to glutathione disulfide (GSSG). Under steady-state conditions, GSSG is recycled back to GSH by glutathione disulfide reductase using reducing equivalents from NADPH. However, under conditions of increased H2O2 flux, this recycling mechanism may become overwhelmed leading to a depletion of intracellular GSH (27, 28).
  • ascorbate radiosensitization can create an overwhelming oxidative stress to pancreatic cancer cells resulting in oxidation/depletion of the GSH intracellular redox buffer, resulting in cell death.
  • Treatment with the combination of ascorbate + IR significantly delayed tumor growth compared to controls or ascorbate alone
  • Ascorbate + IR also significantly increased overall survival compared to controls, IR alone or ascorbate alone
  • 54% of mice treated with the combination of IR + ascorbate had no measurable tumors
  • Glutathione is a measurable marker indicative of the oxidation state of the thiol redox buffer in cells. In severe systemic oxidative stress, the GSSG/2GSH couple may become oxidized, i.e. the concentration of GSH decreases and GSSG may increase because the capacity to recycle GSSG to GSH becomes rate-limiting
  • This suggests that the very high levels of pharmacological ascorbate in these experiments may have a pro-oxidant toward red blood cells as seen by a decrease in the capacity of the intracellular redox buffer
  • These data support the hypothesis that ascorbate radiosensitization does not cause an increase in oxidative damage from lipid-derived aldehydes to other organs.
  • Our current study demonstrates the potential for pharmacological ascorbate as a radiosensitizer in the treatment of pancreatic cancer.
  • pharmacological ascorbate enhances IR-induced cell killing and DNA fragmentation leading to induction of apoptosis in HL60 leukemia cells
  • pharmacological ascorbate significantly decreases clonogenic survival and inhibits the growth of all pancreatic cancer cell lines as a single agent, as well as sensitizes cancer cells to IR
  • Hurst et al. demonstrated that pharmacological ascorbate combined with IR leads to increased numbers of double-strand DNA breaks and cell cycle arrest when compared to either treatment alone
  • pharmacological ascorbate could serve as a “pro-drug” for the delivery of H2O2 to tumors
  • the double-strand breaks induced by H2O2 were more slowly repaired
  • The combination of ascorbate and IR provide two distinct mechanisms of action: ascorbate-induced toxicity due to extracellular production of H2O2 that then diffuses into cells and causes damage to DNA, protein, and lipids; and radiation-induced toxicity as a result of ROS-induced damage to DNA. In addition, redox metal metals like Fe2+ may play an important role in ascorbate-induced cytotoxicity. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of H2O2; labile iron can also react with H2O2. Recently our group has demonstrated that pharmacological ascorbate and IR increase the labile iron in tumor homogenates from this murine model of pancreatic cancer
  • we demonstrated that ascorbate or IR alone decreased tumor growth, but the combination treatment further inhibited tumor growth, indicating that pharmacological ascorbate is an effective radiosensitizer in vivo
  • data suggest that pharmacological ascorbate may protect the gut locally by decreasing IR-induced damage to the crypt cells, and systemically, by ameliorating increases in TNF-α
  •  
    IV vitamin C effective as radiosensitizer in pancreatic cancer.
Nathan Goodyear

Redox Regulation in Cancer Stem Cells - 0 views

  •  
    Redox reactions in cancer stem cells
Nathan Goodyear

The redox biology network in cancer pathophysiology and therapeutics - 0 views

  •  
    Another nice review of the importance of redox in the tumor microenvironment
Nathan Goodyear

Redox regulation in cancer - 0 views

  • Mitochondrial electron-transport chain and other oxidizing agents are the prime pathways that generate excess ROS in vivo
  • Permanent modification of genetic material resulting from the oxidative damage is one of the vital steps involved in mutagenesis that leads to carcinogenesi
  • The most frequent DNA mutations caused during oxidative stress, initiated by ionizing radiation and other environmental carcinogens are 7,8-dihydro-8-oxoguanine (8-Oxo-G) and Thymine Glycol (TG)
  • ...3 more annotations...
  • catalase and SOD, GPx, GST
  • insulin like growth factor I, or fibroblast growth factor 2 generates ROS
  • Depletion of GSH increases the sensitivity of cells to ROS
  •  
    The redox reaction in cancer: great read!
Nathan Goodyear

ScienceDirect - 0 views

  •  
    Great review of the redox system in cancer cells. Everybody focus' on the ROS, but forget about the RNS from NO. The current marketing pushes NO for CVD.
Nathan Goodyear

O2*− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Su... - 0 views

  •  
    Great read and synopsis of the interaction between vitamin C and the altered redox balance in cancer cells. The process involves Fe in part. Ascorbate increases H2O2 which increases the label Fe pool.
Nathan Goodyear

Circulating 2-hydroxy and 16-α hydroxy estrone levels and risk of breast canc... - 1 views

  • 2-OH estrogens bind to the estrogen receptor (ER) with affinity equivalent to or greater than estradiol
  • previous prospective studies have not observed any significant associations with either 2-OH or 16α-OH estrone or the ratio of the two metabolites and breast cancer risk overall.
    • Nathan Goodyear
       
      whether that risk is increased or decreased
  • it has been hypothesized that metabolism favoring the 2-OH over the 16α-OH pathway may be inversely associated with breast cancer risk (28).
  • ...24 more annotations...
  • they may act as only weak mitogens (14, 15), or as inhibitors of proliferation
  • No significant associations have been observed between 2-OH estrone and breast cancer risk
  • While 16α-OH estrone binds to the ER with lower affinity than estradiol, it binds covalently (18-20) and once bound, fails to down-regulate the receptor (21). Thus, 16α-OH estrone stimulates cell proliferation in a manner comparable to estradiol in ER+ breast cancer cell lines
  • In this large prospective study of 2-OH and 16α-OH estrone metabolites and breast cancer risk, we did not observe any significant associations overall with either individual metabolite or with the ratio of the two metabolites
  • we observed positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with lower BMI and women with ER-/PR-tumors,
  • To date, several epidemiologic studies have examined the association between the 2-OH and 16α-OH estrogen metabolites and breast cancer risk with inconclusive results.
  • circulating estrogen levels have been associated more strongly with ER+/PR+ tumors than with ER-/PR- tumors
  • our results do not support the hypothesis that metabolism favoring the 2-OH estrone pathway is more beneficial to breast cancer risk than that favoring the 16α-OH estrone pathway
  • we observed significant positive associations of both 2-OH estrone and the 2:16α-OH estrone ratio with ER-/PR-tumors
  • Three (30, 32, 33) of four (30-33) studies observed RRs above 1 for the association between 16α-OH estrone and breast cancer risk (range of RRs=1.23-2.47); none of the point estimates was statistically significant though one trend was suggestive
  • based on animal studies, 2-OH estrone and the 2:16α-OH estrone ratio have been hypothesized to be inversely associated with breast cancer risk
  • No significant associations have been observed between 2-OH estrone, 16α-OH estrone, or the 2:16α-OH estrone ratio and breast cancer risk and the direction of the estimates is not consistent across studies.
    • Nathan Goodyear
       
      better worded is no consistent, significant associations.   There are some studies that point to the 16 catecholestrogen and increased cancer risk; limited studies show negative effects of 2 catecholestrogens on cancer risk and prospective studies available pretty much dispel the idea that the 2:16 ratio has an risk predictability.
  • we observed a suggestive inverse association with 16α-OH estrone and a significant positive association with the 2:16α-OH estrone ratio among lean women, suggesting possible associations in a low estrogen environment.
  • 16α-OH estrone increases unscheduled DNA synthesis in mouse mammary cells (27) and hence also may be genotoxic
  • Although 2-OH estrogens are capable of redox cycling, the semiquinones and quinones (i.e., the oxidized forms) form stable DNA adducts that are reversible without DNA destruction
  • In our population of PMH nonusers, we observed no associations with ER+/PR+ tumors, but significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with ER-/PR- tumors
    • Nathan Goodyear
       
      one of the few studies to find this association between 2 catecholestrogens and the 2:16 ratio and ER-/PR-tumors
  • Animal and in vitro studies have shown that hydroxy estrogens can induce DNA damage either directly, through the formation of quinones and DNA adducts, or indirectly, through redox cycling and the generation of reactive oxygen species
    • Nathan Goodyear
       
      genotoxic via directe DNA adducts and indirectly via ROS; this is in addition to the proliferative effect
  • we observed a significant positive association between the 2:16α-OH estrone ratio and breast cancer risk among lean women
  • No significant associations have been observed with the 2:16α-OH estrone ratio
  • In the Danish study, no associations were observed with either ER+ or ER- tumors among PMH nonusers
  • significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio were observed among PMH users with ER+, but not ER-, tumors
  • it is possible that the genotoxicity of 2-OH estrone plays a role in hormone receptor negative tumors
  • 4-OH estrogens have a greater estrogenic potential than 2-OH estrogens, given the lower dissociation rate from estrogen receptors compared with estradiol (61), and are potentially more genotoxic since the quinones form unstable adducts, leading to depurination and mutation in vitro and in vivo
  • the balance between the catechol (i.e., 2-OH and 4-OH) and methoxy (i.e., 2-Me and 4-Me) estrogens may impact risk
  •  
    The risks of estrogen metabolism are not clear cut.  Likely never will be due to the complexity of individual metabolism.  This study found no correlation between 2OH-Estrone and 2OH:16alpha-Estrone and breast cancer risk in ER+/PR+ breast cancer.  Translated: no benefit in breast cancer risk in 2OH-Estrone metabolism or increased 2OH:16alpha estrone metabolism.  There was a positive association between 2OH-Estrone and 2:16alpha-Estrone in women with ER-/PR- tumors and low BMI.
  •  
    pakistani sexy girls escort in dubai // russian sexy girsl escort in dubai // sexy girls in dubai // sexy girls escort in dubai //
Nathan Goodyear

IJMS | Free Full-Text | Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism... - 0 views

  •  
    to be read
Nathan Goodyear

Metabolic management of brain cancer - 0 views

  • Glutamine is a major metabolic fuel for both brain tumor cells and tumor-associated macrophages (TAMs)
  • the malignant phenotype of brain tumor cells that survive radiotherapy is often greater than that of the cells from the original tumor.
  • Conventional chemotherapy has faired little better than radiation therapy for the long-term management of malignant brain cancer
  • ...37 more annotations...
  • most conventional radiation and brain cancer chemotherapies can enhance glioma energy metabolism and invasive properties, which would contribute to tumor recurrence and reduced patient survival [34].
  • We contend that all cancer regardless of tissue or cellular origin is a disease of abnormal energy metabolism
  • complex disease phenotypes can be managed through self-organizing networks that display system wide dynamics involving oxidative and non-oxidative (substrate level) phosphorylation
  • As long as brain tumors are provided a physiological environment conducive for their energy needs they will survive; when this environment is restricted or abruptly changed they will either grow slower, growth arrest, or perish [8] and [19]
  • New information also suggests that ketones are toxic to some human tumor cells and that ketones and ketogenic diets might restrict availability of glutamine to tumor cells [68], [69] and [70].
  • The success in dealing with environmental stress and disease is therefore dependent on the integrated action of all cells in the organism
  • Tumor cells survive in hypoxic environments not because they have inherited genes making them more fit or adaptable than normal cells, but because they have damaged mitochondria and have thus acquired the ability to derive energy largely through substrate level phosphorylation
  • Cancer cells survive and multiply only in physiological environments that provide fuels (mostly glucose and glutamine) subserving their requirement for substrate level phosphorylation
  • Integrity of the inner mitochondrial membrane is necessary for ketone body metabolism since β-hydroxybutyrate dehydrogenase, which catalyzes the first step in the metabolism of β-OHB to acetoacetate, interacts with cardiolipin and other phospholipids in the inner membrane
  • the mitochondria of many gliomas and most tumors for that matter are dysfunctional
  • Cardiolipin is essential for efficient oxidative energy production and mitochondrial function
  • Any genetic or environmental alteration in the content or composition of cardiolipin will compromise energy production through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • the Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • the Crabtree effect can be reversible, the Warburg effect is largely irreversible because its origin is with permanently damaged mitochondria
  • The continued production of lactic acid in the presence of oxygen is the metabolic hallmark of most cancers and is referred to as aerobic glycolysis or the Warburg effect
  • We recently described how the retrograde signaling system could induce changes in oncogenes and tumor suppressor genes to facilitate tumor cell survival following mitochondrial damage [48].
  • In addition to glycolysis, glutamine can also increase ATP production under hypoxic conditions through substrate level phosphorylation in the TCA cycle after its metabolism to α-ketoglutarate
  • mitochondrial lipid abnormalities, which alter electron transport activities, can account in large part for the Warburg effect
  • targeting both glucose and glutamine metabolism could be effective for managing most cancers including brain cancer
  • The bulk of experimental evidence indicates that mitochondria are dysfunctional in tumors and incapable of generating sufficient ATP through oxidative phosphorylation
  • Cardiolipin defects in tumor cells are also associated with reduced activities of several enzymes of the mitochondrial electron transport chain making it unlikely that tumor cells with cardiolipin abnormalities can generate adequate energy through oxidative phosphorylation
  • The Crabtree effect involves the inhibition of respiration by high levels of glucose
  • Warburg effect involves elevated glycolysis from impaired oxidative phosphorylation
  • TCA cycle substrate level phosphorylation could therefore become another source of ATP production in tumor cells with impairments in oxidative phosphorylation
  • Caloric restriction, which lowers glucose and elevates ketone bodies [63] and [64], improves mitochondrial respiratory function and glutathione redox state in normal cells
  • DR naturally inhibits glycolysis and tumor growth by lowering circulating glucose levels, while at the same time, enhancing the health and vitality of normal cells and tissues through ketone body metabolism
  • DR is anti-angiogenic
  • DR also reduces angiogenesis in prostate and breast cancer
  • We suggest that apoptosis resistance arises largely from enhanced substrate level phosphorylation of tumor cells and to the genes associated with elevated glycolysis and glutaminolysis, e.g., c-Myc, Hif-1a, etc, which inhibit apoptosis
  • Modern medicine has not looked favorably on diet therapies for managing complex diseases especially when well-established procedures for acceptable clinical practice are available, regardless of how ineffective these procedures might be in managing the disease
  • More than 60 years of clinical research indicates that such approaches are largely ineffective in extending survival or improving quality of life
  • The process is rooted in the well-established scientific principle that tumor cells are largely dependent on substrate level phosphorylation for their survival and growth
  • Glucose and glutamine drive substrate level phosphorylation
  • targeting the glycolytically active tumor cells that produce pro-cachexia molecules, restricted diet therapies can potentially reduce tumor cachexia
  • It is important to recognize, however, that “more is not better” with respect to the ketogenic diet
  • Blood glucose ranges between 3.0 and 3.5 mM (55–65 mg/dl) and β-OHB ranges between 4 and 7 mM should be effective for tumor management
  •  
    Dr Seyfriend presents his metabolic approach to the treatment of brain cancer.
Nathan Goodyear

The therapeutic implications of ketone bodies: the effects of ketone bodies in patholog... - 0 views

  •  
    need to access this article
Nathan Goodyear

Redox imbalance in Parkinson's disease. [Biochim Biophys Acta. 2008] - PubMed - NCBI - 0 views

  •  
    oxidative stress and Parkinson's disease
1 - 20 of 56 Next › Last »
Showing 20 items per page