Skip to main content

Home/ Dr. Goodyear/ Group items tagged GSH peroxidase

Rss Feed Group items tagged

Nathan Goodyear

Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer - 0 views

  • Previous studies from our laboratory have demonstrated that pharmacological ascorbate is cytotoxic to pancreatic cancer cells while normal cells are resistant
  • Ascorbate-induced cytotoxicity is mediated by the formation of H2O2 during the oxidation of ascorbate
  • the combination of IR + ascorbate increased the concentration of intracellular H2O2
  • ...17 more annotations...
  • Under steady-state conditions, intracellular GSH is maintained at millimolar concentrations, which keeps cells in a reduced environment and serves as the principal intracellular redox buffer when cells are subjected to an oxidative stressor including H2O2 (26). Glutathione peroxidase (GPx) activity catalyzes the reduction of H2O2 to water with the conversion of GSH to glutathione disulfide (GSSG). Under steady-state conditions, GSSG is recycled back to GSH by glutathione disulfide reductase using reducing equivalents from NADPH. However, under conditions of increased H2O2 flux, this recycling mechanism may become overwhelmed leading to a depletion of intracellular GSH (27, 28).
  • ascorbate radiosensitization can create an overwhelming oxidative stress to pancreatic cancer cells resulting in oxidation/depletion of the GSH intracellular redox buffer, resulting in cell death.
  • Treatment with the combination of ascorbate + IR significantly delayed tumor growth compared to controls or ascorbate alone
  • Ascorbate + IR also significantly increased overall survival compared to controls, IR alone or ascorbate alone
  • 54% of mice treated with the combination of IR + ascorbate had no measurable tumors
  • Glutathione is a measurable marker indicative of the oxidation state of the thiol redox buffer in cells. In severe systemic oxidative stress, the GSSG/2GSH couple may become oxidized, i.e. the concentration of GSH decreases and GSSG may increase because the capacity to recycle GSSG to GSH becomes rate-limiting
  • This suggests that the very high levels of pharmacological ascorbate in these experiments may have a pro-oxidant toward red blood cells as seen by a decrease in the capacity of the intracellular redox buffer
  • These data support the hypothesis that ascorbate radiosensitization does not cause an increase in oxidative damage from lipid-derived aldehydes to other organs.
  • Our current study demonstrates the potential for pharmacological ascorbate as a radiosensitizer in the treatment of pancreatic cancer.
  • pharmacological ascorbate enhances IR-induced cell killing and DNA fragmentation leading to induction of apoptosis in HL60 leukemia cells
  • pharmacological ascorbate significantly decreases clonogenic survival and inhibits the growth of all pancreatic cancer cell lines as a single agent, as well as sensitizes cancer cells to IR
  • Hurst et al. demonstrated that pharmacological ascorbate combined with IR leads to increased numbers of double-strand DNA breaks and cell cycle arrest when compared to either treatment alone
  • pharmacological ascorbate could serve as a “pro-drug” for the delivery of H2O2 to tumors
  • the double-strand breaks induced by H2O2 were more slowly repaired
  • The combination of ascorbate and IR provide two distinct mechanisms of action: ascorbate-induced toxicity due to extracellular production of H2O2 that then diffuses into cells and causes damage to DNA, protein, and lipids; and radiation-induced toxicity as a result of ROS-induced damage to DNA. In addition, redox metal metals like Fe2+ may play an important role in ascorbate-induced cytotoxicity. By catalyzing the oxidation of ascorbate, labile iron can enhance the rate of formation of H2O2; labile iron can also react with H2O2. Recently our group has demonstrated that pharmacological ascorbate and IR increase the labile iron in tumor homogenates from this murine model of pancreatic cancer
  • we demonstrated that ascorbate or IR alone decreased tumor growth, but the combination treatment further inhibited tumor growth, indicating that pharmacological ascorbate is an effective radiosensitizer in vivo
  • data suggest that pharmacological ascorbate may protect the gut locally by decreasing IR-induced damage to the crypt cells, and systemically, by ameliorating increases in TNF-α
  •  
    IV vitamin C effective as radiosensitizer in pancreatic cancer.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

Nebulized Glutathione Induces Bronchoconstriction in Patients with Mild Asthma (ATS Jou... - 0 views

  •  
    Study finds that nebulizer glutathione in mild asthma induces bronchoconstriction.  This despite the knowledge that glutathione peroxidase activity is known to be depressed in those with asthma.  The severity of the asthma of the individuals included in this study might explain the finding.
Nathan Goodyear

Oxidative Stress and Its Relationship With Adenosine Deaminase Activity in Various Stag... - 0 views

  • Reduced SOD activity might be responsible for excessive accumulation of superoxide anions leading to increased free radical mediated injury. Increased free radical production has been shown to be responsible for chromosomal damage leading to mutagenecity, cell proliferation and carcinogenesis. SOD activity showed marked improvement after mastectomy indicating the lowering of oxidative stress.
  • The increased production of reactive oxygen species causes oxidative stress leading to cell proliferation and hence increased inflammatory conditions
  • Superoxide dismutase is an important antioxidant enzyme which decomposes the harmful superoxide anions into hydrogen peroxide thus protects the body from the action of free radicals
  • ...20 more annotations...
  • Females suffering from breast cancer had significantly decreased Superoxide dismutase (SOD) and reduced glutathione (GSH) levels in comparison to normal females
  • ADA seems to be a promising marker of inflammation in breast cancer thereby suggesting that it can be used as a diagnostic tool to detect the stage of breast cancer along with cytopathological studies
  • In conclusion, our study confirmed the role of oxidative stress in the pathogenesis of breast cancer.
  • Another potent antioxidant molecule is reduced glutathione. It acts as reductant which converts hydrogen peroxide into water and reduces lipid peroxidation products into their corresponding alcohols and thus mediates protective action.
  • In the present study, significantly low SOD activity has been observed in female patients suffering from carcinoma breast both pre as well as post operative in comparison to healthy females.
  • We observed significantly decreased SOD activity and GSH levels in patients belonging to clinical stage 4 as compared to those having stages 1, 2 or 3 of breast cancer.
  • Increased ADA activity in breast cancer patients has also been reported
  • The compromised antioxidant defence system produces the oxidative stress which in turn creates the inflammatory response shown by concomitant increased adenosine deaminase (ADA) activity in female patients.
  • Experimental and epidemiological evidences implicate the involvement of oxygen derived free radical in the pathogenesis of breast cancer.
  • Antioxidant status was highly depressed in advanced stages of breast cancer as compared to initial stage.
  • In the present study, significantly low GSH levels were observed in female patients of carcinoma breast as compared to normal females
  • Walia et al. (1995) reported increased ADA activity in breast cancer patients as compared to age matched normal subjects.
  • These free radicals are able to cause damage to membrane, mitochondria and macromolecules including proteins, lipids and DNA and actively take part in cell proliferation. This cascade in turn generates the inflammatory response and causes the progression of the disease.
  • increased oxidative stress gives rise to inflammation which could further aggravates the disease
  • Breast carcinoma involves a cascade of events that are highly inflammatory.
  • Marked oxidative stress in stage 4 of breast cancer indicated advancement of the disease, hence checking oxidative stress at initial stage could be helpful for controlling the progression of the disease.
  • They concluded that ADA is a better probable parameter for detection of breast cancer
  • Adenosine deaminase enzyme (ADA) catalyzes the conversion of adenosine to inosine which finally gets converted to uric acid
  • serum ADA activity tends to increase with advancing age,
  • Prevalence of oxidative stress gives rise to inflammation.
  •  
    Study finds a reduction in SuperOxide Dismutase and Glutathione Perioxidase in advancing breast cancer.  Cancer is a high oxidative stress disease that results in inflammation, mitochondrial dysfunction and proliferation.  Adenosine Deaminase (ADA) is proposed to be another biomarker to assess tumor stage.  
Nathan Goodyear

The rate of cellular hydrogen peroxide removal shows dependency on GSH: Mathematical in... - 0 views

  • High levels of ROS will lead to a more oxidized redox environment thereby inducing cell damage or even cell death
  • Catalase
  • six members of the peroxiredoxin family of enzymes
  • ...2 more annotations...
  • glutathione peroxidases
  • all reduce H2O2 to water (organic hydroperoxides are reduced to water and the corresponding alcohol) with the electrons coming from GSH, a necessary and specific cofactor.
  •  
    good review of the interaction between H202 and the glutathione pathway.  This has significant implications in the mechanism of action in cancer cells with IV vitamin C.
Nathan Goodyear

Peripheral oxidative stress in relapsing-remitting multiple sclerosis - 0 views

  •  
    Relapsing remitting MS patients found to have in increased 8OHdG, reduced glutathione, reduced glutathione to oxidized glutathione ratio, super oxidized disumutase, glutathione reductase, and global oxidative stress.  In contrast, decreased total antioxidant capacity, oxidized glutathione, glutathione perioxidase, and glutathione transferase were found in relapsing remitting MS patients.
Nathan Goodyear

ScienceDirect - Food and Chemical Toxicology : Neuroprotective effect of ginger on anti... - 0 views

  • A marked decrease in anti-oxidant marker enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH) and increase in malondialdehyde (MDA) was observed in the diabetic rats
  • inger may be used as therapeutic agent in preventing complications in diabetic patients.
  • These results suggest that ginger exhibit a neuroprotective effect by accelerating brain anti-oxidant defense mechanisms and down regulating the MDA levels to the normal levels in the diabetic rats
  •  
    Ginger reduces oxidative stress in diabetic rat model
Nathan Goodyear

Vitamin C and cancer revisited - 0 views

  • It is well known that vitamin C, or ascorbic acid, is an effective biologic antioxidant and does not act as a pro-oxidant under normal conditions (5) because it does not readily autoxidize, i.e., react with oxygen (O2) to produce reactive oxygen species, such as superoxide radicals (O2•−) or H2O2
  • However, ascorbate readily donates an electron to redox-active transition metal ions, such as cupric (Cu2+) or ferric (Fe3+) ions, reducing them to cuprous (Cu+) and ferrous (Fe2+) ions, respectively
  • Reduced transition metal ions, in contrast to ascorbic acid, readily react with O2, reducing it to superoxide radicals (Reaction 2), which in turn dismutate to form H2O2 and O2
  • ...6 more annotations...
  • The H2O2 produced this way (Reactions 1–3) seems to be key to ascorbate's antitumor effect because H2O2 causes cancer cells to undergo apoptosis, pyknosis, and necrosis
  • In contrast, normal cells are considerably less vulnerable to H2O2
  • The reason for the increased sensitivity of tumor cells to H2O2 is not clear but may be due to lower antioxidant defenses
  • In fact, a lower capacity to destroy H2O2—e.g., by catalase, peroxiredoxins, and GSH peroxidases—may cause tumor cells to grow and proliferate more rapidly than normal cells in response to low concentrations of H2O2
  • These observations, combined with the inhibitory effect on xenograft growth, provide the proof of concept that millimolar concentrations of extracellular ascorbate, achievable by i.p. injection or i.v. infusion in experimental animals and humans, respectively, exert pro-oxidant, antitumor effects in vivo.
  • They also show that the concentration of the ascorbyl radical correlates with the concentration of H2O2 in interstitial fluid, whereas no H2O2 can be detected in blood or plasma
  •  
    review of the mechanism of how extracellular AA, only obtainable from parenteral dosing, can produce H2O2 extracellularly to then be cytotoxic to cancer cells.
1 - 9 of 9
Showing 20 items per page