Skip to main content

Home/ About The Indian Ocean/ Group items tagged and

Rss Feed Group items tagged

Jérôme OLLIER

Coupled hydrodynamic and water quality modeling in the coastal waters off Chennai, East... - 0 views

  •  
    Coastal waters are inherently dynamic due to river discharge, industrial effluents, shipping, dredging, waste dumping, and sewage disposal. Population growth in urban cities, climate change and variability, and changes in land-use practices all contribute to pressure on coastal water quality (SKOVSKI et al., 2012; MILLER and HUTCHINS, 2017; KUMAR et al., 2020; Vijay PRAKASH et al., 2021). Anthropogenic activity is evident around these estuaries and coastal and open ocean environments. Hence, it is important to assess the water quality on a regular basis and provide mitigation measures for coastal pollution (YUVARAJ et al., 2018). Improving water quality and variability in coastal waters is necessary and should be prioritized. Observational programs, which are more expensive and time-consuming, aid in understanding the status of water quality and its trends. Many countries have coastal programs that use predictive systems to inform the public and stakeholders about coastal health. Hydrodynamic processes are an integral part of complex surface water systems. The main factor that determines the concentration of pollutants is hydrodynamic transport, which includes advection, dispersion, vertical mixing, and convection (James, 2002). The flow and circulation patterns have a great influence not only on the distribution of temperature, nutrients, and dissolved oxygen (DO) but also on the aggregation and distribution of sediments and pollutants. When a load of pollutants is discharged into coastal waters, it is affected by the fate and transportation processes that change its concentration. Several studies have been conducted to evaluate the coastal water quality spatiotemporally along the east coast of Indian coastal waters using site-specific data and model configuration (PANDA et al., 2006; BHARAHTI et al., 2017; NAIK et al., 2020; MOHANTY et al., 2021). Through numerical modeling and remote sensing, estimation is user-friendly and low-cost in evaluating any water quali
Jérôme OLLIER

Pathways to integrate Indigenous and local knowledge in ocean governance processes: Les... - 0 views

  •  
    The Introduction of this paper argues that current coastal and ocean management approaches like marine spatial planning (MSP) often do not adequately acknowledge and integrate Indigenous and Local Knowledge (ILK). This is problematic because how humans value and perceive coastal and marine resources is integrally linked to how they use and manage these resources, especially in adapting to social-ecological change. Coastal and marine resources are situated within complex social-ecological systems that are culturally, economically, historically and politically embedded. Therefore, management approaches have to integrate transdisciplinary and contextual perspectives in order to be relevant, sustainable and adaptive. Following extensive research in Algoa Bay, South Africa this article highlights several pathways to bridge the gap between existing ILK and current coastal and ocean management approaches. The Methods section discusses how the authors worked in tandem with a bottom-up (engaging with Indigenous and local coastal and marine resource users) and top-down (engaging with coastal governance authorities and practitioners) approach. In order to answer the primary research question "How can ILK be integrated into area-based ocean management like MSP"? the authors employed arts-based participatory methods as well as in-depth interviews and workshops with coastal governance authorities and practitioners over several months. This work then culminated in a one-day multi-stakeholder workshop which brought both ILK holders and coastal authorities and practitioners together to collaboratively identify pathways to integrate this knowledge into coastal and ocean management. In the Results and Discussion section the authors present and discuss five co-identified pathways to integrate ILK in coastal and ocean management which include: adopting contextual approaches to coastal and ocean management; increasing transparency and two-way communication between coastal authorities and
Jérôme OLLIER

Seasonal variability and its impact on the sub-tidal macrobenthic fauna of Diu Island, ... - 0 views

  •  
    The productivity and sustainability of coastal, marine, and estuarine ecosystems are heavily reliant on the quality of coastal waters (JHA et al., 2013; JHA et al., 2015; DHEENAN et al., 2016). These locations are thought to have greater biodiversity than open ocean zones (GRAY, 1997). Among the biological components of soft bottom sediments, macrobenthic organisms are essential for ecosystem functioning (Pandey et al., 2022). They play a vital role in secondary production and nutrient exchange between the pelagic and benthic realms and therefore constitute essential elements of estuarine and coastal habitats (SNELGROVE, 1998) and are a reliable indicator for assessing the biotic integrity of the coastal ecosystem (RYU et al., 2011; Pandey et al., 2021). Due to their sedentary lifestyle, long life cycle, and differential response against the perturbation, they also serve as useful bio-indicator (GESTEIRA-GOMEZet al., 2003) for health monitoring and assessment of coastal ecosystems (GANESH et al., 2014) and evaluating the success of conservation efforts (WINBERGT et al., 2007). Identification of factors responsible for spatiotemporal patterns in macrofaunal assemblages is the primary goal amongst many marine benthic ecological studies (BOLAM et al., 2008; DUTERTRE et al., 2013; PANDEY and GANESH , 2019b). However, such pattern in the benthic community is often hard to predict due to the complex interplay between environmental parameters and biological interactions (ELLIS et al., 2006). The relationship between natural environmental factors and macrobenthos is reported to help delineate faunal distribution patterns, characterising benthic habitats, establish baseline knowledge, and enabling the detection of spatial and temporal variations (BOLAM et al., 2008; SHUMCHENIA and King, 2010; Dutertre et al., 2013). Numerous studies (Van Hoey et al., 2004; Hily et al., 2008; DUTERTRE et al., 2013; Pandey and Ganesh, 2019b) have identified sediment properties as a significan
Jérôme OLLIER

A Sustained Ocean Observing System in the Indian Ocean for Climate Related Scientific K... - 0 views

  •  
    The Indian Ocean is warming faster than any of the global oceans and its climate is uniquely driven by the presence of a landmass at low latitudes, which causes monsoonal winds and reversing currents. The food, water, and energy security in the Indian Ocean rim countries and islands are intrinsically tied to its climate, with marine environmental goods and services, as well as trade within the basin, underpinning their economies. Hence, there are a range of societal needs for Indian Ocean observation arising from the influence of regional phenomena and climate change on, for instance, marine ecosystems, monsoon rains, and sea-level. The Indian Ocean Observing System (IndOOS), is a sustained observing system that monitors basin-scale ocean-atmosphere conditions, while providing flexibility in terms of emerging technologies and scientificand societal needs, and a framework for more regional and coastal monitoring. This paper reviews the societal and scientific motivations, current status, and future directions of IndOOS, while also discussing the need for enhanced coastal, shelf, and regional observations. The challenges of sustainability and implementation are also addressed, including capacity building, best practices, and integration of resources. The utility of IndOOS ultimately depends on the identification of, and engagement with, end-users and decision-makers and on the practical accessibility and transparency of data for a range of products and for decision-making processes. Therefore we highlight current progress, issues and challenges related to end user engagement with IndOOS, as well as the needs of the data assimilation and modeling communities. Knowledge of the status of the Indian Ocean climate and ecosystems and predictability of its future, depends on a wide range of socio-economic and environmental data, a significant part of which is provided by IndOOS.
Jérôme OLLIER

Sex and Size Influence the Spatiotemporal Distribution of White Sharks, With Implicatio... - 0 views

  •  
    Human activities in the oceans increase the extinction risk of marine megafauna. Interventions require an understanding of movement patterns and the spatiotemporal overlap with threats. We analysed the movement patterns of 33 white sharks (Carcharodon carcharias) satellite-tagged in South Africa between 2012 and 2014 to investigate the influence of size, sex and season on movement patterns and the spatial and temporal overlap with longline and gillnet fisheries and marine protected areas (MPAs). We used a hidden Markov model to identify 'resident' and 'transient' movement states and investigate the effect of covariates on the transition probabilities between states. A model with sex, total length and season had the most support. Tagged sharks were more likely to be in a resident state near the coast and a transient state away from the coast, while the probability of finding a shark in the transient state increased with size. White sharks moved across vast areas of the southwest Indian Ocean, emphasising the need for a regional management plan. White sharks overlapped with longline and gillnet fisheries within 25% of South Africa's Exclusive Economic Zone and spent 15% of their time exposed to these fisheries during the study period. The demersal shark longline fishery had the highest relative spatial and temporal overlap, followed by the pelagic longline fishery and the KwaZulu-Natal (KZN) shark nets and drumlines. However, the KZN shark nets and drumlines reported the highest white shark catches, emphasising the need to combine shark movement and fishing effort with reliable catch records to assess risks to shark populations accurately. White shark exposure to shark nets and drumlines, by movement state, sex and maturity status, corresponded with the catch composition of the fishery, providing support for a meaningful exposure risk estimate. White sharks spent significantly more time in MPAs than expected by chance, likely due to increased prey abundance
Jérôme OLLIER

Sex and size influence the spatiotemporal distribution of white sharks, with implicatio... - 0 views

  •  
    Human activities in the oceans increase the extinction risk of marine megafauna. Interventions require an understanding of movement patterns and the spatiotemporal overlap with threats. We analysed the movement patterns of 33 white sharks (Carcharodon carcharias) satellite-tagged in South Africa between 2012 and 2014 to investigate the influence of size, sex and season on movement patterns and the spatial and temporal overlap with longline and gillnet fisheries and marine protected areas (MPAs). We used a hidden Markov model to identify 'resident' and 'transient' movement states and investigate the effect of covariates on the transition probabilities between states. A model with sex, total length and season had the most support. Tagged sharks were more likely to be in a resident state near the coast and a transient state away from the coast, while the probability of finding a shark in the transient state increased with size. White sharks moved across vast areas of the southwest Indian Ocean, emphasising the need for a regional management plan. White sharks overlapped with longline and gillnet fisheries within 25% of South Africa's Exclusive Economic Zone and spent 15% of their time exposed to these fisheries during the study period. The demersal shark longline fishery had the highest relative spatial and temporal overlap, followed by the pelagic longline fishery and the KwaZulu-Natal (KZN) shark nets and drumlines. However, the KZN shark nets and drumlines reported the highest white shark catches, emphasising the need to combine shark movement and fishing effort with reliable catch records to assess risks to shark populations accurately. White shark exposure to shark nets and drumlines, by movement state, sex and maturity status, corresponded with the catch composition of the fishery, providing support for a meaningful exposure risk estimate. White sharks spent significantly more time in MPAs than expected by chance, likely due to increased prey abundance
Jérôme OLLIER

Marine Macrobenthos of NorthWest India-Reviewing the Known and Unknown - @FrontMarineSci - 0 views

  •  
    Tropical ecosystems sustain higher biodiversity and face faster species extinction. However, baseline information of these areas is either inadequate or scattered due to various reasons. The 2,360 km long coast of North West India (NWI), is a heavily industrialized and urbanized zone. This coast with unique biogeographical and climatic features with two notified marine protected areas also supports rich biodiversity. This review was motivated by a need to construct a synoptic view on marine benthic ecology and functioning by consolidating available information of macrobenthos. Two thousand seventy-eight macrobenthic taxa belonging to 14 phyla were compiled from 147 references and were composed mostly by Polychaeta (n = 617), Gastropoda (n = 602), and Bivalvia (n = 216). Habitat wise, intertidal and subtidal zones were more intensely studied and contributed most to the diversity records. Sediment texture and salinity were the major drivers of macrobenthic community structure in the subtidal areas and estuaries, respectively. In the intertidal zones, zonation patterns related to the tidal levels and time of exposure were distinct with the high water zones being sparsely populated and lower intertidal zones sustaining higher species and functional diversities. All zones of NWI coast were distinctly impacted to various extent by anthropogenic activities affecting the resident macrobenthos. Decline in species richness and species substitution due to pollution were reported in urbanized zones. Non-monsoonal months favored a more conducive environment for the macrobenthic diversity and functionality. Hypoxia tolerant polychaete species mainly belonging to Spionidae and Cossuridae dominated during the low oxygen conditions of upwelling and OMZ zones of NWI. Inadequate identification and inconsistency of sampling methods were major deterrents for concluding trends of distributions. Suggestions for future macrobenthic research include focusing on lesser studied groups and are
Jérôme OLLIER

Social-ecological vulnerability to climate change and risk governance in coastal fishin... - 0 views

  •  
    In Bangladesh, fishing communities are one of the most climate-vulnerable groups, though they play an important role in economic development. The main objective of this study was to identify vulnerability by exploring exposure (i.e., lack of regulating services or household capitals), susceptibility (i.e., lack of access to provisioning services), and lack of resilience (i.e., lack of alternative livelihoods and capacity) and to explore adaptation options, and challenges to understand risk governance. The study considered 45 published research articles for analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Keywords were used in combinations (e.g., fishing communities and Bangladesh) to identify and screen published articles. Articles published in English focusing on vulnerability and/or risk governance, published between 2011 and 2022, featuring original empirical data or a comprehensive systematic review, and published in peer-reviewed journals were included. Articles were excluded if vulnerability and risk governance were evaluated but did not fit or match the definition used in this study. The study found frequent disasters and ocean warming caused different stresses, such as reduced fish catch and income, and resulted in an increased risk of fisheries conflict. Moreover, fishing communities have limited access to properties, modern fishing equipment, financial institutions, and fisher-centered organizations. Adaptation strategies include ecosystem-based (e.g., plantation, payment for ecosystem services) and non-ecosystem-based (e.g., temporary migration, getting help from neighbors) approaches. To boost fish production, the Government of Bangladesh instituted fishing restrictions and social safety net programs (e.g., distributing rice during the fishing restrictions); both initiatives were helpful. However, the conservation policies are not being implemented properly, and there is no particular social welfa
Jérôme OLLIER

Experimental Assessment of Vulnerability to Warming in Tropical Shallow-Water Marine Or... - 0 views

  •  
    Tropical shallow-water habitats represent the marine environments with the greatest biodiversity; however, these habitats are the most vulnerable to climate warming. Corals, seagrasses, and macroalgae play a crucial role in the structure, functions, and processes of the coastal ecosystems. Understanding their growth and physiological responses to elevated temperature and interspecific sensitivity is a necessary step to predict the fate of future coastal community. Six species representatives, including Pocillopora acuta, Porites lutea, Halophila ovalis, Thalassia hemprichii, Padina boryana, and Ulva intestinalis, collected from Phuket, Thailand, were subjected to stress manipulation for 5 days. Corals were tested at 27, 29.5, 32, and 34.5°C, while seagrasses and macroalgae were tested at 27, 32, 37, and 42°C. After the stress period, the species were allowed to recover for 5 days at 27°C for corals and 32°C for seagrasses and macroalgae. Non-destructive evaluation of photosynthetic parameters (Fv/Fm, Fv/F0, ϕPSII and rapid light curves) was carried out on days 0, 3, 5, 6, 8, and 10. Chlorophyll contents and growth rates were quantified at the end of stress, and recovery periods. An integrated biomarker response (IBR) approach was adopted to integrate the candidate responses (Fv/Fm, chlorophyll content, and growth rate) and quantify the overall temperature effects. Elevated temperatures were found to affect photosynthesis, chlorophyll content, and growth rates of all species. Lethal effects were detected at 34.5°C in corals, whereas adverse but recoverable effects were detected at 32°C. Seagrasses and macroalgae displayed a rapid decline in photosynthesis and lethal effects at 42°C. In some species, sublethal stress manifested as slower growth and lower chlorophyll content at 37°C, while photosynthesis remained unaffected. Among all, T. hemprichii displayed the highest thermotolerance. IBR provided evidence that elevated temperature affected the overall perf
Jérôme OLLIER

Cetacean Research and Citizen Science in Kenya - @FrontMarineSci - 0 views

  •  
    In 2011, several non-governmental and government agencies established the Kenya Marine Mammal Network (KMMN) to provide a platform for the consistent collection of data on marine mammals along the Kenyan coast, identify areas of importance and engage marine users and the general public in marine mammal conservation. Prior to the KMMN, relatively little was known about marine mammals in Kenya, limiting conservation strategies. The KMMN collects data nationwide through dedicated surveys, opportunistic sightings and participative citizen science, currently involving more than 100 contributors. This paper reviews data on sightings and strandings for small cetaceans in Kenya collated by the KMMN. From 2011 to 2019, 792 records of 11 species of small cetaceans were documented. The most frequently reported inshore species were the Indo-Pacific bottlenose dolphin and Indian Ocean humpback dolphin. Offshore species, included killer whales, short-finned pilot whale and long-snouted spinner dolphin. Indo-Pacific bottlenose dolphins, long-snouted spinner dolphins, striped dolphins and Risso's dolphins were recorded through stranding reports. The efforts of the KMMN were disseminated through international meetings (International Whaling Commission, World Marine Mammal Conference), national status reports, outreach and social media. Data has also supported the identification of three IUCN Important Marine Mammal Areas and one Area of Interest in Kenya. Further research is needed to improve estimates of cetacean abundance and distribution, particularly in unstudied coastal areas, and to assess the extent of anthropogenic threats associated with fisheries, coastal and port development, seismic exercises and unregulated tourism. The expansion of the network should benefit from the participation of remote coastal fishing communities, government research agencies, tourism and seismic operations, among others. The KMMN demonstrated the value of dedicated and citizen science data to enh
Jérôme OLLIER

#coronavirus - Long-Term Trends and Impact of SARS-CoV-2 #Covid19 Lockdown on the Prima... - 0 views

  •  
    COrona VIrus Disease (COVID) 2019 pandemic forced most countries to go into complete lockdown and India went on complete lockdown from 24th March 2020 to 8th June 2020. To understand the possible implications of lockdown, we analyze the long-term distribution of Net Primary Productivity (NPP) in the North Indian Ocean (NIO) and the factors that influence NPP directly and indirectly, for the period 2003-2019 and 2020 separately. There exists a seasonal cycle in the relationship between Aerosol Optical Depth (AOD), Chlorophyll-a (Chl-a) and NPP in agreement with the seasonal transport of aerosols and dust into these oceanic regions. In Arabian Sea (AS), the highest Chl-a (0.58 mg/m3), NPP (696.57 mg/C/m2/day) and AOD (0.39) are observed in June, July, August, and September (JJAS). Similarly, maximum Chl-a (0.48 mg/m3) and NPP (486.39 mg/C/m2/day) are found in JJAS and AOD (0.27) in March, April, and May (MAM) in Bay of Bengal. The interannual variability of Chl-a and NPP with wind speed and Sea Surface Temperature (SST) is also examined, where the former has a positive and the latter has a negative feedback to NPP. The interannual variability of NPP reveals a decreasing trend in NPP, which is interlinked with the increasing trend in SST and AOD. The analysis of wind, SST, Chl-a, and AOD for the pre-lockdown, lockdown, and post lockdown periods of 2020 is employed to understand the impact of COVID-19 lockdown on NPP. The assessment shows the reduction in AOD, decreased wind speeds, increased SST and reduced NPP during the lockdown period as compared to the pre-lockdown, post-lockdown and climatology. This analysis is expected to help to understand the impact of aerosols on the ocean biogeochemistry, nutrient cycles in the ocean biogeochemical models, and to study the effects of climate change on ocean ecosystems.
Jérôme OLLIER

Environment variables affect CPUE and spatial distribution of fishing grounds on the li... - 0 views

  •  
    To better develop and protect the pelagic fishery in the northwest Indian Ocean, China's fishing enterprises have been producing pelagic fisheries in the said area for a long time. Based on the fishing log data of light falling gear in the northwest Indian Ocean from 2016 to 2020, this study analyzed the impact of different time scales on the catch rate and fishing ground center of gravity of light falling gear fishing grounds. We also explored the relationship between different time scales and catch per unit effort (CPUE) by using the fishing ground center of gravity, the Random Forest model (RF), and the generalized additive model (GAM). The results were shown as follows: (1) From 2016 to 2020, 76,576 t were captured, and 16,496 nets were operated; (2) The gravity center of fishing ground in the Northwest Indian Ocean moved to the northeast as a whole, and the monthly fishing ground gravity center changed first to the Southern and then to the northern; (3) RF model (R² = 0.709, RMSE = 0.2034, and prediction accuracy is 55.8%), which is better than the GAM model (R² = 0.632, RMSE = 0.2242, and prediction accuracy is 37.3%). In the RF model, the importance of time variables on CPUE was in the order of week, year, operation time, and lunar phase; in the GAM model, it was week, year, lunar phase, and operation time. On the whole, the importance of the long time scale (year, week) is greater than that of the short time scale (lunar phase and operation time). (4) The RF model and GAM model show that the most critical environmental variables were SST, DO, SSS, and Chla, and the least important were SSH, Δ50, and CV50. SST, Chla, and DO significantly impact pelagic fishing and CPUE and are critical reference indexes for predicting the Northwest Indian Ocean light falling gear fishing ground. (5) The 95% confidence interval showed that the suitable interval of time, space, and environmental variables in the RF model was much smaller than in the GAM model.
Jérôme OLLIER

Relationships Matter: Assessing the Impacts of a Marine Protected Area on Human Wellbei... - 0 views

  •  
    The push to meet global marine conservation targets has significantly increased the scope and scale of marine protected areas (MPAs) worldwide. While the benefits derived from MPA establishment are often optimistically framed as a "win-win" for both marine biodiversity and for the wellbeing of coastal peoples, this assumption is challenged for several reasons, including the fact that current science and practice frequently fails to account for the full impact of MPAs on human wellbeing. This context poses a danger that the context specific, place based aspects of wellbeing, like relations to others and the marine environment, will not be accounted for, examined, or reported in evaluation and decision-making processes. To address this challenge, this research investigates how MPA implementation can change and challenge the relational wellbeing and relational values of small-scale fishers (SSFs) living in Mnazi Bay-Ruvuma Estuary Marine Park, Tanzania. Fieldwork occurred over 2019-2020 and used qualitative data collection methods, including: 140 semi-structured interviews, document analysis, and observation. Results highlight a dynamic interaction between the MPA and SSFs relational wellbeing, including how relational values inform everyday fishing practices, cultural and place identities, as well as interactions with others and connections to the marine environment. Top-down approaches used in MPA development worked against key relational values, including social cohesion, reciprocity, place, agency and self-determination to dismantle and disrupt the practices SSFs viewed as fundamental to their livelihood and collective wellbeing. Our findings serve as a starting point to better recognize the context specific factors that underlie relational wellbeing and give insight into how relational values shape social-ecological complexity within coastal communities. The paper highlights how the international marine conservation community can better account for and foste
Jérôme OLLIER

Satellite assessment of coastal plume variability and its relation to environmental var... - 0 views

  •  
    Monthly composites of remote sensing reflectance at 555 nm wavelength (Rrs555) from ocean color imagery of the MODIS sensor onboard the Aqua platform were used to characterize the spatial and temporal variability of coastal plume in the Sofala Bank and its relation to river discharge, local rainfall, and wind speed. To achieve the objective, maps of monthly composites of Rrs555 over the Sofala Bank were inspected and statistical analysis was performed, including correlation, analysis of variance, and wavelet coherence between environmental variables and both plume area and Rrs555. Climatology of Rrs555 revealed that both plume dispersion and Rrs555 values are higher during June to December and lower during January to May. A positive correlation (r = 0.77) between wind speed and monthly time series of Rrs555, and a negative correlation between the Zambezi river discharge (r = −0.21) and rainfall (r = −0.67) with Rrs555 were found. These results suggest that variation of suspended matter in the Sofala Bank is mainly controlled by erosion and re-suspension by winds rather than the input of terrigenous matter by the Zambezi River discharge and rainfall, assuming that Rrs555 can be a valid proxy for the inorganic suspended matter. The southern portion of the Sofala Bank (i.e., near the mouths of the Pungue and Buzi Rivers) presented higher values of Rrs555 if compared to the center region near Zambezi river mouth and the northern region near Licungo river mouth. The higher Rrs555 values in the southern region might be associated with higher re-suspension rates due to increased tide mixing, dredging activities, and the shallower nature of bathymetry in the southern region. The dominance of wind in controlling the variability of suspended sediments and the eventual relatively greater contribution of Pungue and Buzi River than the Zambezi in supplying sediments could represent an evidence of weakening of Zambezi River supply of sediments, a process that might have start
Jérôme OLLIER

Distribution of stable isotopes of Mo and W from a river to the ocean: signatures of an... - 0 views

  •  
    Molybdenum and tungsten are redox-sensitive elements, and their stable isotope ratios have attracted attention as paleoceanographic proxies. However, our knowledge of the distribution of stable Mo and W isotopes in the modern hydrosphere remains limited. In this study, we provided the concentrations and isotope ratios of dissolved Mo and W in the oceans (the North Pacific and Indian Oceans), marginal seas (the East China Sea and Sea of Japan), and a river-estuary system in Japan (from the Uji-Yodo rivers to Osaka Bay). In the North Pacific and Indian Oceans, the W concentration was 48.2 ± 6.2 pmol/kg (ave ± 2sd, n = 109), δ186/184W was 0.52 ± 0.06 ‰, the Mo concentration was 105.1 ± 8.0 nmol/kg, and δ98/95Mo was 2.40 ± 0.06 ‰. The results indicate that W has the constant concentration and isotopic composition in the modern ocean as well as Mo. In the East China Sea and the Sea of Japan, the W concentration and δ186/184W in the upper water (< 1000 m depth) were different from those in the ocean (W = 56 ± 18 pmol/kg, δ186/184W = 0.45 ± 0.06 ‰, n = 24). However, the concentrations in deeper water were congruent with those in the oceans (W = 49.9 ± 7.6 pmol/kg, δ186/184W = 0.50 ± 0.02 ‰, n = 7). The Mo concentration was 105.4 ± 3.1 nmol/kg and δ98/95Mo was 2.36 ± 0.03 ‰ (n = 31) throughout the water column, congruent with those in the ocean. In the Uji River-Yodo River-Osaka Bay system, the W concentration reached 1074 pmol/kg and δ186/184W reached 0.20 ‰. We propose that the enrichment of W with a low δ186/184W in the river-estuary system and marginal seas is caused by anthropogenic pollution. Anthropogenic Mo pollution was not detected in marginal seas. However, the Mo concentration and δ98/95Mo showed high anomalies above the mixing line of river water and seawater in the lower Yodo River and Osaka Bay, implying possible anthropogenic pollution of Mo in the metropolitan area.
Jérôme OLLIER

Processes controlling the distributions and cycling of dissolved aluminum and manganese... - 0 views

  •  
    Aluminum and manganese are both key parameters in the GEOTRACES program. Data on dissolved aluminum (dAl) and dissolved manganese (dMn) relative to their geochemical behavior remain limited in the northeastern Indian Ocean (IO; including the Bay of Bengal (BoB) and equatorial Indian Ocean (Eq. IO)). Seawater samples collected in the BoB and Eq. IO during the spring inter-monsoon period (7 March to 9 April) of 2017 were analyzed to investigate the behavior and main processes controlling the distributions of dAl and dMn in the northeastern IO. The average concentrations of dAl and dMn in the mixed layer of the BoB were 16.6 and 6.7 nM, respectively. A modified 1-D box-model equation was utilized to estimate the contributions of different sources to dAl and dMn in the mixed layer. Al released from the desorption of and/or dissolution of the lithogenic sediments discharged by the Ganga-Brahmaputra (G-B) river system predominantly controlled the dAl distributions in the mixed layer of the BoB, while the desorption from the lithogenic sediments only contributed approximately 13%-21% dMn. Additional dMn input from the advection of Andaman Sea water and photo-reduction-dissolution of particulate Mn(IV) contributed more than 60% dMn in the mixed layer of the BoB. dAl and dMn in the surface mixed layer of the Eq. IO were mainly affected by the mixing of dAl- and dMn-enriched BoB surface water and low-dAl, low-dMn southern Arabian Sea surface water. Considering water mass properties and dAl concentrations, the distributions of dAl in the intermediate water (750-1,500 m) of northeastern IO were controlled by the mixing of Red Sea Intermediate Water, Indonesian Intermediate Water, and intermediate water of the BoB. Different from dAl, the apparent oxygen utilization relationship with dMn concentrations indicated that the regeneration of lithogenic particles under hypoxic conditions played a more important role than the remineralization of settling organic particles in co
Jérôme OLLIER

Diversity of Indian Barnacles in Marine Provinces and Ecoregions of the Indian Ocean - ... - 0 views

  •  
    The present study is the first completed and taxonomically validated literature review of the biodiversity of barnacles (Cirripedia) in India. A total of 144 species in 75 genera and 19 families have been recorded in India. The highest number of species has been recorded from the Bay of Bengal province, located on the eastern side of the Indian Peninsula, comprising the Eastern India ecoregion (76 species) and Northern Bay of Bengal ecoregion (34 species). The West and South India Shelf province has fewer species (Western India ecoregion: 29 species; South India and Sri Lanka ecoregion: 40 species; and Maldives ecoregion: 10 species) compared to the Bay of Bengal province. The Andaman province is composed of the Andaman and Nicobar Islands, and contains 65 species. Most of the coral-associated barnacles (family Pyrgomatidae) have been recorded in the corals reefs of the Andaman and Nicobar Islands (7 species), Eastern India (6 species), and Northern Bay of Bengal ecoregions (5 species). Sponge-associated barnacles (mostly in the subfamily Acastinae) were recorded in the Eastern India ecoregion, Southern India and Sri Lanka, and Andaman and Nicobar Islands ecoregions. Deepwater species were recorded the most extensively in the Andaman and Nicobar Islands ecoregion (21 species), followed by the South India and Sri Lanka ecoregion (9 species) and Eastern India ecoregion (7 species). Six Atlantic/boreal cold water species previously reported in India were removed due to incorrect identification, and some incorrectly identified species were validated and corrected.
Jérôme OLLIER

First ROV Exploration of the Perth Canyon: Canyon Setting, Faunal Observations, and Ant... - 0 views

  •  
    This study represents the first ROV-based exploration of the Perth Canyon, a prominent submarine valley system in the southeast Indian Ocean offshore Fremantle (Perth), Western Australia. This multi-disciplinary study characterizes the canyon topography, hydrography, anthropogenic impacts, and provides a general overview of the fauna and habitats encountered during the cruise. ROV surveys and sample collections, with a specific focus on deep-sea corals, were conducted at six sites extending from the head to the mouth of the canyon. Multi-beam maps of the canyon topography show near vertical cliff walls, scarps, and broad terraces. Biostratigraphic analyses of the canyon lithologies indicate Late Paleocene to Late Oligocene depositional ages within upper bathyal depths (200-700 m). The video footage has revealed a quiescent 'fossil canyon' system with sporadic, localized concentrations of mega- and macro-benthos (∼680-1,800 m), which include corals, sponges, molluscs, echinoderms, crustaceans, brachiopods, and worms, as well as plankton and nekton (fish species). Solitary (Desmophyllum dianthus, Caryophyllia sp., Vaughanella sp., and Polymyces sp.) and colonial (Solenosmilia variabilis) scleractinians were sporadically distributed along the walls and under overhangs within the canyon valleys and along its rim. Gorgonian, bamboo, and proteinaceous corals were present, with live Corallium often hosting a diverse community of organisms. Extensive coral graveyards, discovered at two disparate sites between ∼690-720 m and 1,560-1,790 m, comprise colonial (S. variabilis) and solitary (D. dianthus) scleractinians that flourished during the last ice age (∼18 ka to 33 ka BP). ROV sampling (674-1,815 m) spanned intermediate (Antarctic Intermediate Water) and deep waters (Upper Circumpolar Deep Water) with temperatures from ∼2.5 to 6°C. Seawater CTD profiles of these waters show consistent physical and chemical conditions at equivalent depths between dive
Jérôme OLLIER

Environmental Factors and Genetic Diversity as Drivers of Early Gonadal Maturation: A G... - 0 views

  •  
    In recent years, attaining gonadal maturation in smaller Hilsa (Tenualosa ilisha) has become a burning issue for Hilsa fishery of Bangladesh. Causes of early maturation are not yet clearly understood. Along with environmental parameters, genetic differentiation within the population was hypothesized as the main driver, and therefore, assessing the correlation between gonadosomatic index (GSI) and environmental factors and analyzing genetic diversity were set as objectives of the present study. To address these complex issues, six diverse habitats across Bangladesh were chosen for Hilsa sample collection. For GSI, gonad was dissected from fresh fish and preserved in Bouin's fluid for histological observation. Water quality parameters such as temperature, dissolved oxygen, pH, and salinity were also assessed. 35 fish from each habitat were used to extract and amplify DNA through the PCR technique, and genetic diversity was examined. Further, to draw a firm conclusion, the phylogenetic tree of the Hilsa population was developed by the unweighted pair-group method of arithmetic mean method based on the Cyt b gene of mitochondrial DNA. Results of GSI studies revealed that peak spawning months of T. ilisha were in October and February, where October showed the highest values in all six habitats. Histological examination showed different stages of gonadal development in different sizes and ages of Hilsa. Among all sampling sites, no statistical difference was observed for GSI value; however, smaller sized and aged Hilsa being ripped were evident in Gaglajur Haor and Kali River. Among the observed water quality parameters, temperature correlated with GSI strongly. Increased GSI was observed with temperature augmentation from downstream to upper stream, irrespective of body size and age. A perplex correlation between dissolved oxygen of observed habitats and GSI was executed. Other physico-chemical parameters viz. pH and salinity exhibited weak and moderate positive associ
Jérôme OLLIER

An indicator-based approach to assess sustainability of port-cities and marine manageme... - 0 views

  •  
    Ports and neighbouring cities function as connectors between land and water and have long accommodated a substantial flow of goods and services. Port cities in the Western Indian Ocean (WIO) region and the Global South (GS) are rapidly and inevitably expanding as the demand for global trade increases. However, this expansion has numerous impacts on the surrounding marine ecosystem and the socio-economic livelihoods of local communities. We propose a framework to evaluate the sustainability of port cities in the WIO region and more broadly for cities in the GS. Through an exploratory approach, a systematic literature review (SLR) was undertaken to identify existing themes on port city and marine ecosystem sustainability indicator frameworks. The results revealed a strong bias towards sustainability publications designed for port cities in Global North. The approach developed from this study focuses on the socio-economic and environmental attributes relevant to ports in the WIO region and for GS countries. This draws from the Drivers, Pressures, States, Impacts and Responses (DPSIR) framework and includes 78 indicators. The indicators are designed to identify and report on the complex land and sea interdependencies of port cities. To test the validity of these indicators their interdependencies were examined through a Causal Network (CN) structure which identified 12 priority DPSIR CN. These were also mapped to the UNSDGs enabling the wider applicability and transferability of the framework. The resulting framework enables port cities in emerging economies to establish robust sustainable reporting systems and provides a framework that offers a unique lens for evaluating interactions embedded in the land and sea continuum.
1 - 20 of 705 Next › Last »
Showing 20 items per page