Skip to main content

Home/ Dr. Goodyear/ Group items matching "n-7" in title, tags, annotations or url

Group items matching
in title, tags, annotations or url

Sort By: Relevance | Date Filter: All | Bookmarks | Topics Simple Middle
1More

J6 Power Wheelchair - 0 views

  •  
    J6 Power Wheelchair The compact J6 is the ultimate choice for users who demand the superb stability of Mid-Wheel 6 design and tight-quarter maneuverability. Highly adaptable, the J6 accepts a wide range of seating and electronics options while its powerful drive train delivers high-performance torque. J6 Power Wheelchair Features: Mid-Wheel 6 allows six wheels on the ground for maximum stability. Compatible with TRU-Balance Tilt. OMNI-Casters (nylon, spherical-shaped casters) on front and rear prevent wheel hang-ups. Side-mounted, easily accessible freewheel levers. ATX Suspension (Active-Trac with extra stability) incorporates front OMNI-Casters for enhanced. Performance over more varied terrain. Easy front access to batteries. J6 Power Wheelchair Specifications: Drive Wheels: 10" Solid Optional: 10" Pneumatic Caster Wheels Front: 5" Solid Rear: 6" Solid Anti-Tip Wheels N/A Maximum Speed^4/^: Up to 4 mph Ground Clearance: 2.5" (frame) Turning Radius^5/^: 22" Overall Length: 34.74" without foot riggings Base Width: 23.19" Seating Sizes: TRU-Balance® 2 Synergy/Static: W: 10-20" D: 10-20" Power Tilt: W: 14-20" D: 14-20" Lift & Tilt: N/A Seat-to-Floor Heights: TRU-Balance® 2 Synergy/Static8: 16.5" - 17.5" Power Tilt8: 16.875" Lift & Tilt8: N/A Manual Tilt/Recline^10/^: Yes Battery Size^6/^: U-1 Battery Weight^14/^: 23.4 lbs. Available Electronics^12/^: 70A Q-Logic 2 NE 70A Q-Logic 2 NE+ 70A Q-Logic 2 EX Battery Charger 5A Off-board Motor Packages 2-Pole 4 mph Weight Capacity^7/^: 300 lbs.9 Base Weight: 100.2 lbs
1More

Palmitoleic acid (n-7) increases white adipocyte lipolysis and lipase content... - 0 views

  •  
    Palmitoleic acid, an omega-7, is associated with increased lipolysis through PPARalpha.
1More

Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity ... - 0 views

  •  
    N-acetylcysteine, also known as NAC, a precursor to glutathione, is shown to significantly reduce the incidence of flu symptoms.  NAC should be taken through out the winter months as a flu prevention?  Well, this study does not support that, but if one gets the flu, NAC will significantly reduce the flu symptoms.
128More

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
15More

Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor,... - 0 views

  • the MAF precursor activity of prostate cancer patient Gc protein is lost or reduced, because their serum Gc protein is deglycosylated by serum α-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells
  • Administration of 100 ng of GcMAF
  • 100 ng of GcMAF was administered intramuscularly once a week
  • ...11 more annotations...
  • As GcMAF therapy progressed the MAF precursor activity of all five patients increased and their serum Nagalase activity decreased inversely
  • As GcMAF therapy progressed, the MAF precursor activity increased with a concomitant decrease in serum Nagalase activity
  • serum Nagalase is proportional to tumor burden
  • as GcMAF therapy progressed, serum Nagalase activity decreased and, concomitantly, tumor burden decreased
  • the serum Nagalase activities of all 16 patients decreased as GcMAF therapy progressed
  • annual computed tomographic scans of these patients confirmed them being tumor recurrence-free for the 7 years
  • undifferentiated cells were killed rapidly during the first few weeks, and the differentiated cells were killed slowly in the remaining GcMAF therapeutic period
  • PSA levels of prostatectomized patients decreased as serum Nagalase decreased during GcMAF therapy
  • In patients without tumor resection, however, although serum Nagalase activity decreased as GcMAF therapy progressed, their PSA values remained unchanged. The result suggests that the PSA derived from tumor-bearing prostate did not change while tumor burden decreased. Because tumor-induced inflammation in the noncancerous prostate tissues causes secretion of PSA [38], the PSA produced from these inflamed noncancerous prostate tissues cannot be changed by the decrease in tumor burden
  • Advanced cancer patients have high serum Nagalase activities, resulting in no macrophage activation and severe immunosuppression that explain why cancer patients die with overwhelming infection
  • Prognostic utility of serum α-N-acetylgalactosaminidase and immunosuppression resulted from deglycosylation of serum Gc protein in oral cancer patients
  •  
    GC-MAF levels exist in inverse relationship to nagalase.  In this study of men with prostate cancer, weekly GCMAF injections reduced Nagalase activity to levels found in healthy controls suggesting tumor free. The dose was 100 ng/week. Nagalase is a protein that suppresses GC-MAF production and thus is immunosuppressive.
1More

Golden Motor Electric Wheelchair - 0 views

  •  
    Powerchairs are generally four-wheeled or six-wheeled and non-folding, however some folding designs exist and other designs may have some ability to partially dismantle for transit. Four general styles of powerchair drive systems exist: front, centre or rear wheel drive and all-wheel drive. Powered wheels are typically somewhat larger than the trailing/castoring wheels, while castoring wheels are typically larger than the castors on a manual chair. Centre wheel drive powerchairs have castors at both front and rear for a six-wheel layout. Angel Wheelchair Electric standing wheelchair Standing up, driving function by power. Head and signal light (controlled by joystick). Adjustable headrest. Adjustable footplate. Detachable backrest Rigid steel framework W/liquid coating Flip-backward armrest Max speed: 9.15KM/H Front castor: 2.80/2.50-4 pneumatic castor (9") Rear wheels: 3.00-8 pneumatic tire (14") Available seat width: A (46 cm), D (42 cm) Max loading: A size: 135 kg Net weight w/o battery: 62.7 kg A powerchairs is a wheelchair that is propelled by means of an electric motor rather than manual power. Power wheelchairs are useful for those unable to propel a manual wheelchair or who may need to use a wheelchair for distances or over terrain which would be fatiguing in a manual wheelchair. They may also be used not just by people with 'traditional' mobility impairments, but also by people with cardiovascular and fatigue based condition. An powerwheelchair powers more than just chair. It gives the power to safely travel long distances on own. It empowers to navigate through home, backyard, school, workplace or local park. It gives power to do the things,want to do. It gives power. When accidents occur that leave permanent leg injuries, or as age sets in and joint pain becomes unbearable, the power chair acts as a gateway to continue living life to the fullest. The powerwheelchairs in our lineup are all battery powered, yet each device fills
2More

Arch Intern Med -- Abstract: Effect of Different Antilipidemic Agents and Diets on Mort... - 0 views

  • Statins and n-3 fatty acids are the most favorable lipid-lowering interventions with reduced risks of overall and cardiac mortality.
  •  
    Omega-3 most favorable lipid lowering agent
1More

Results of the MIDAS trial: Effects of docosahexaenoic acid on physiological and safety... - 0 views

  •  
    no abstract available, however this study found DHA slowed age related cognitive decline at 900 mg daily.
12More

Dietary Strategy to Repair Plasma Membrane After Brain Trauma - 0 views

  • strategies directed to preserve phospholipids in the plasma membrane such as the use of dietary docosahexaenoic acid (C22:6n-3; DHA)5 can have beneficial effects for post-TBI recovery
  • DHA is the most abundant polyunsaturated fatty acid (PUFA) in the brain
  • The combination of curcumin and DHA had a trend of greater effects in BDNF (117% of CTL; Figure 1C) compared with DHA or curcumin alone.
  • ...8 more annotations...
  • Our previous study indicated that n-3 fatty acids supplemented in the diet counteracted learning disability after TBI
  • There was a significant group effect on BDNF (F 4,25 = 5.229, P < .01 by ANOVA), and FPI reduced BDNF levels (50% of CTL, P < .01; Figure 1C), which was counteracted by DHA supplementation (90% of CTL, P < .05; Figure 1C). Curcumin also counteracted this reduction of BDNF
  • Curcumin provided in the diet before TBI can reduce oxidative damage and counteract TBI-related cognitive dysfunction.
  • curcumin contributed to enhance the action of DHA, protecting against cognitive impairment, and these effects were associated with elevations in the BDNF receptor signaling
  • Our current results show that curcumin contributes to enhance the effects of DHA on TBI by promoting phosphorylation of the BDNF receptor TrkB in the hippocampus.
  • previous evidence indicates that curcumin10 and DHA5 counteract TBI-related learning disability by involving BDNF
  • The effects of the DHA diet and curcumin on cognitive enhancement were consistent with enhanced elevations in BDNF receptor signaling
  • effects of DHA and curcumin up to 2 weeks after TBI because this is the most critical period for the course of injury recovery because the brain is metabolically dysfunctional during this time
  •  
    study that finds curcumin + DHA increased cognitive improvement after TBI within 2 weeks.  Good discussion of the proposed mechanism--increased BDNF.
2More

Reduction in the incidence of type 2 diabetes with... [N Engl J Med. 2002] - PubMed result - 0 views

  • The lifestyle intervention was more effective than metformin.
  •  
    Lifestyle changes are more effective than metformin in Diabetes prevention in high risk individuals
35More

Promising role for Gc-MAF in cancer immunotherapy: from bench to bedside - 0 views

  • MAF precursor activity has also been lost or reduced after Gc-globulin treatment in some cancer cell lines
  • This appears to result from the deglycosylated ɑ-N-acetylgalactosaminidase (nagalase) secreted from cancerous cells
  • Nagalase has been detected in many cancer patients, but not in healthy individuals
  • ...31 more annotations...
  • Studies have shown that the production of nagalase has a mutual relationship with Gc-MAF level and immunosuppression
  • It has been demonstrated that serum levels of nagalase are good prognosticators of some types of cancer
  • The nagalase level in serum correlates with tumor burden and it has been shown that Gc-MAF therapy progresses, nagalase activity decreases
  • It has been shown that Gc-MAF can inhibit the angiogenesis induced by pro-inflammatory prostaglandin E1
  • The effect of Gc-MAF on chemotaxis or activation of tumoricidal macrophages is likely the main mechanism against angiogenesis.
  • Administration of Gc-MAF stimulates immune-cell progenitors for extensive mitogenesis, activates macrophages and produces antibodies. “This indicates that Gc-MAF is a powerful adjuvant for immunization.”
  • Cancer cell lines do not develop into tumor genes in mouse models after Gc-MAF-primed immunization (29-31) and the effect of Gc-MAF has been approved for macrophage stimulation for angiogenesis, proliferation, migration and metastatic inhibition on tumors induced by MCF-7 human breast cancer cell line
  • The protocol included: "a high dose of second-generation Gc-MAF (0.5 ml) administered twice a week intramuscularly for a total of 21 injections.”
  • Yamamoto et al. showed that the administration of Gc-MAF to 16 patients with prostate cancer led to improvements in all patients without recurrence
  • Inui et al. reported that a 74-year-old man diagnosed with prostate cancer with multiple bone metastases was in complete remission nine months after initiation of GcMAF therapy simultaneously with hyper T/NK cell, high-dose vitamin C and alpha lipoic acid therapy
  • It has also been approved for non-neoplastic diseases such as autism (41), multiple sclerosis (42, 43), chronic fatigue syndrome (CFS) (40), juvenile osteoporosis (44) and systemic lupus erythematous (45).
  • Gc-MAF has been verified for use in colon, thyroid (38), lung (39), liver, thymus (36), pancreatic (40), bladder and ovarian cancer and tongue squamous carcinoma
  • Prostate, breast, colon, liver, stomach, lung (including mesothelioma), kidney, bladder, uterus, ovarian, head/neck and brain cancers, fibrosarcomas and melanomas are the types of cancer tested thus far
  • weekly administration of 100 ng Gc-MAF to cancer at different stages and types showed curative effects at different follow-up times
  • this treatment has been suggested for non-anemic patients
  • Studies have shown that weekly administration of 100 ng Gc-MAF to cancer patients had curative effects on a variety of cancers
  • Because the half-life of the activated macrophages is approximately one week, it must be administered weekly
  • In vivo weekly intramuscular administration of Gc-MAF (100 ng) for 16-22 weeks was used to treat patients with breast cancer
  • individuals harboring different VDR genotypes had different responses to Gc-MAF and that some genotypes were more responsive than others
  • Administration of Gc-MAF for cancer patients exclusively activates macrophages as an important cell in adaptive immunity
  • Gc-MAF supports humoral immunity by producing, developing and releasing large quantities of antibodies against cancer. Clinical evidence from a human model of breast cancer patients supports this hypothesis
  • There is also evidence that confirms the tumoricidal role of Gc-MAF via Fc-receptor mediation
  • It is likely that the best therapeutic responses will be observed when the nutritional and inflammatory aspects are taken together with stimulation of the immune system
  • it should be noted that no harmful side effects of Gc-MAF treatment have been reported, even when it was successfully administered to autistic children
  • The natural activation mechanism of macrophages by Gc-MAF is so natural and it should not have any side effects on humans or animal models even in cell culture
  • Besides the Gc-MAF efficacy on macrophage activity, it can be a potential anti-angiogenic agent (28) and an inhibitor of the migration of cancerous cells in the absence of macrophages (47).
  • Activating or modifying natural killer cells, dendritic cells, DC, CTL, INF and IL-2 have all been recommended for cancer immunotherapy
  • It has been reported that nagalase cannot deglycosylate Gc-MAF as it has specificity for Gc globulin alone
  • inflammation-derived macrophage activation with the participation of B and T lymphocytes is the main mechanism
  • macrophages highly-activated by the addition of Gc-MAF can show tumoricidal activity
  • Previous clinical investigations have confirmed the efficacy of Gc-MAF. In addition to activating existing macrophages, Gc-MAF is a potent mitogenic factor that can stimulate the myeloid progenitor cells to increase systemic macrophage cell counts by 40-fold in four days
  •  
    great review on Gc-MAF in cancer.  An increase in nagalase blocks Gc-protein to Gc-MAF activity leaving the host immune system compromised.
1 - 11 of 11
Showing 20 items per page