Skip to main content

Home/ Dr. Goodyear/ Group items tagged phosphate

Rss Feed Group items tagged

Nathan Goodyear

LeptiPro - Intelligent Weight Control - 0 views

  • "leptin resistance."
  • In order for leptin to control body weight and metabolism, it must do so from the hypothalamic centers in the brain,
  • When brain levels of leptin are low due to "leptin resistance" - even if there are high circulating blood levels of leptin - food cravings and weight gain occur because the body believes that it is hungry and goes into a state of continued fat storage.
  • ...2 more annotations...
  • By reversing "leptin resistance," through the blocking of PTP1 B, the function of the protein hormone leptin is restored so that the hypothalamic center can normally and effectively modulate body weight and metabolism.
  • Published studies demonstrate that the botanically derived phytochemical, isolated and purified single-peak Isoquinoline Alkaloid Berberine Hel, specifically and potently inhibits human Protein Tyrosine Phosphates 1B (PTP1 B).
  •  
    Obese or struggling with weight?  look to Leptin
Nathan Goodyear

Cell - Insulin Signaling: Inositol Phosphates Get into the Akt - 0 views

  •  
    Inositol phsophoglycans part of insulin signaling pathways
Nathan Goodyear

Muscle Hypertrophy 2011 - 0 views

  • mechanical tension, muscle damage and metabolic stress are the three primary factors that promote hypertrophy from exercise
  • The mechanical tension is directly related to intensity of the exercise, which is the key to stimulating muscle growth
  • Muscle damage, that leads to muscle soreness, from exercise training initiates an inflammatory response, which activates satellite cells growth processes
  • ...6 more annotations...
  • metabolic stress that is a result of the byproducts of anaerobic metabolism (i.e., hydrogen ions, lactate, inorganic phosphates) is now also believed to promote hormonal factors leading to muscle hypertrophy
  • The upper extremities tend to show more growth earlier then the lower body
  • Maximal growth occurs with loads between 80-95% of 1 repetition maximum
  • weightlifters and powerlifters show more favorable hypertrophy of type II (fast twitch) muscle fibers
  • body builders appear to have comparable hypertrophy in both the type I (slow twitch) and type II muscle fibers
  • Multi-joint exercises have been shown to produce larger increases of anabolic hormones than single-joint exercises
  •  
    Review of the physiology of muscle building.  The authors review the evidence behind the types of muscle building exercises and the physiology responsible for muscle hypertrophy.  The authors point to Schoenfeld's description of mechanical tension, muscle damage, and metabolic stress to build muscle.
Nathan Goodyear

Estimation of risk of glucose 6-phosphate dehydrogenase-deficient red cells to ozone an... - 0 views

  •  
    ozone and G6PD risk
Nathan Goodyear

Ozone: a possible cause of hemolytic anemia in glucose-6-phosphate dehydrogenase defici... - 0 views

  •  
    Ozone requires G6PD
Nathan Goodyear

Increase in Glucose-6-Phosphate Dehydrogenase in Adipocytes Stimulates Oxidative Stress... - 0 views

  •  
    G6PD as a marker of obesity and IR. G6PD is produced from adipocytes.
Nathan Goodyear

Intravenous Ascorbate as a Tumor Cytotoxic Chemotherapeutic Agent - 0 views

  • There is a 10 — 100-fold greater content of catalase in normal cells than in tumor cells
  • induce hydrogen peroxide generation
  • Ascorbic acid and its salts (AA) are preferentially toxic to tumor cells in vitro (6 — 13) and in vivo
  • ...36 more annotations...
  • related to intracellular hydrogen peroxide generation
  • only be obtained by intravenous administration of AA
  • Preferentially kills neoplastic cells
  • Is virtually non-toxic at any dosage
  • Does not suppress the immune system, unlike most chemotherapy agents
  • Increases animal and human resistance to infectious agents by enhancing lymphocyte blastogenesis, enhancing cellular immunity, strengthening the extracellular matrix, and enhancing bactericidal activity of neutrophils and modulation of complement protein
  • Strengthens the structural integrity of the extracellular matrix which is responsible for stromal resistance to malignant invasiveness
  • 1969, researchers at the NCI reported AA was highly toxic to Ehrlich ascites cells in vitro
  • In 1977, Bram et al reported preferential AA toxicity for several malignant melanoma cell lines, including four human-derived lines
  • Noto et al reported that AA plus vitamin K3 had growth inhibiting action against three human tumor cell lines at non-toxic levels
  • Metabolites of AA have also shown antitumor activity in vitro
  • The AA begins to reduce cell proliferation in the tumor cell line at the lowest concentration, 1.76 mg/dl, and is completely cytotoxic to the cells at 7.04 mg/dl
  • the normal cells grew at an enhanced rate at the low dosages (1.76 and 3.52 mg/dl)
  • preferential toxicity of AA for tumor cells. >95% toxicity to human endometrial adenocarcinoma and pancreatic tumor cells (ATCC AN3-CA and MIA PaCa-2) occurred at 20 and 30 mg/dl, respectively.
  • No toxicity or inhibition was demonstrated in the normal, human skin fibroblasts (ATCC CCD 25SK) even at the highest concentration of 50 mg/dl.
  • the use of very high-dose intravenous AA for the treatment of cancer was proposed as early as 1971
  • Cameron and Pauling have published extensive suggestive evidence for prolonged life in terminal cancer patients orally supplemented (with and without initial intravenous AA therapy) with 10 g/day of AA
  • AA, plasma levels during infusion were not monitored,
  • the long-term, oral dosage used in those experiments (10 g/day), while substantial and capable of producing immunostimulatory and extracellular matrix modulation effects, was not high enough to achieve plasma concentrations that are generally cytotoxic to tumor cells in culture
  • This low cytotoxic level of AA is exceedingly rare
  • 5 — 40 mg/dl of AA is required in vitro to kill 100% of tumor cells within 3 days. The 100% kill levels of 30 mg/dl for the endometrial carcinoma cells and 40 mg/dl for the pancreatic carcinoma cells in Figure 2 are typical
  • normal range (95% range) of 0.39-1.13 mg/dl
  • 1 h after beginning his first 8-h infusion of 115 g AA (Merit Pharmaceuticals, Los Angeles, CA), the plasma AA was 3.7 mg/dl and at 5 h was 19 mg/dl. During his fourth 8-h infusion, 8 days later, the 1 h plasma level was 158 mg/dl and 5 h was 185 mg/dl
  • plasma levels of over 100 mg/dl have been maintained in 3 patients for more than 5 h using continuous intravenous infusion
  • In rare instances of patients with widely disseminated and rapidly proliferating tumors, intravenous AA administration (10 — 45 g/day) precipitated widespread tumor hemorrhage and necrosis, resulting in death
  • Although the outcomes were disastrous in these cases, they are similar to the description of tumor-necrosis-factor-induced hemorrhage and necrosis in mice (52) and seem to demonstrate the ability of AA to kill tumor cells in vivo.
  • toxic effects of AA on one normal cell line were observed at 58.36 mg/dl and the lack of side effects in patients maintaining >100 mg/dl plasma levels
  • Although it is very rare, tumor necrosis, hemorrhage, and subsequent death should be the highest priority concern for the safety of intravenous AA for cancer patients.
  • Klenner, who reported no ill effects of dosages as high as 150 g intravenously over a 24-h period
  • Cathcart (55) who describes no ill effects with doses of up to 200 g/d in patients with various pathological conditions
  • following circumstances: renal insufficiency, chronic hemodialysis patients, unusual forms of iron overload, and oxalate stone formers
  • Screening for red cell glucose-6-phosphate dehydrogenase deficiency, which can give rise to hemolysis of red blood cells under oxidative stress (57), should also be performed
  • any cancer therapy should be started at a low dosage to ensure that tumor hemorrhage does not occur.
  • patient is orally supplementing between infusions
  • a scorbutic rebound effect can be avoided with oral supplementation. Because of the possibility of a rebound effect, measurement of plasma levels during the periods between infusions should be performed to ensure that no such effect takes place
  • Every effort should be made to monitor plasma AA levels when a patient discontinues intravenous AA therapy.
  •  
    Older study, 1995, but shows the long-standing evidence that IVC preferentially is cytotoxic to cancer cells.`
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
Nathan Goodyear

Demystified . . . Human endogenous retroviruses - 0 views

  • HERVs have been inherited by successive generations and it is possible that some have conferred biological benefits
  • However, several HERVs have been implicated in certain cancers and autoimmune diseases
  • HERVs constitute about 1% of the human genome
  • ...16 more annotations...
  • Human endogenous retroviruses (HERVs) represent footprints of previous retroviral infection and have been termed “fossil viruses”
  • HERVs possess a similar genomic organisation to present day exogenous retroviruses such as human immunodeficiency virus (HIV) and human T cell leukaemia virus (HTLV)
  • Retroviruses in effect are retrograde, because the flow of genetic information is reversed compared with the normal pathway of molecular biosynthesis—DNA → RNA → protein. Indeed, all retroviruses necessitate the conversion of viral RNA into a cDNA intermediary, which is catalysed by the enzyme reverse transcriptase
  • Overall, human endogenous retroviruses constitute about 1% of the human genome”
  • some HERVs have been implicated in certain autoimmune diseases and cancers
  • A unit of sugar, phosphate, and base is strictly termed a nucleotide
  • human genes are composed of exons, which are transcribed and translated into amino acids
  • introns, which are interspersed between exons and represent non-translated regions that contribute to the large size of some genes
  • convincing argument for the possible involvement of HERVs in malignancy
  • HERVs may be involved in carcinogenesis by virtue of the expression of HERV mRNA,26 functional proteins,27 or retroviral-like particles
  • They may also be associated with the generation of new promoters29 or the activation of proto-oncogenes
  • inhibition of an effective immune response,
  • encode immunosuppressive proteins
  • “It has been suggested that HERV-K may be important in the progression of testicular germ cell tumours through inhibition of an effective immune response”
  • HERV-K might be important in the pathogenesis of human breast cancer
  • activation of proto-oncogenes of the ras family is common in many tumour types, and some studies have suggested a potential role for HERVs in ras activation
  •  
    good review of HERVs.
Nathan Goodyear

Frontiers | Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic M... - 0 views

  • The SOC for GBM was modified in this patient to initiate KMT prior to surgical resection, to eliminate steroid medication, and to include HBOT as part of the therapy
  • the greatest therapeutic benefit for patients (near 1.0)
  • The observed reduction in blood glucose in our patient would reduce lactic acid fermentation in the tumor cells, while the elevation of ketone bodies would fuel normal cells thus protecting them from hypoglycemia and oxidative stress
  • ...30 more annotations...
  • Previous studies showed that GBM survival and tumor growth was correlated with blood glucose levels
  • Evidence indicates that glioma cells cannot effectively use ketone bodies for energy due to defects in the number, structure, and function of their mitochondria
  • The accuracy of the GKI as a predictor for therapeutic efficacy, however, is better when ketone bodies are measured from the blood than when measured from the urine
  • A reduction of glucose-driven lactic acid fermentation would not only increase tumor cell apoptosis, but would also reduce inflammation and edema in the tumor microenvironment thus reducing tumor cell angiogenesis and invasion
  • Besides serving as a metabolic fuel for GBM, glutamine is also an essential metabolite for normal immune cells
  • therapies that inhibit glutamine availability and utilization must be strategically employed to avoid inadvertent impairment of immune cell functions
  • we used the non-toxic green tea extract, EGCG, and chloroquine in an attempt to limit glutamine availability to the tumor cells
  • EGCG is thought to target the glutamate dehydrogenase activity that facilitates glutamine metabolism in GBM cells
  • Chloroquine, on the other hand, will inhibit lysosomal digestion thus restricting fermentable amino acids and carbohydrates from phagocytosed materials in the tumor microenvironment
  • HBOT to increase oxidative stress in the tumor cells
  • As glucose and glutamine fermentation protect tumor cells from oxidative stress, reduced availability of these metabolites under ketosis could enhance the therapeutic action of HBOT, as we recently described
  • Prior to subtotal tumor resection and standard of care (SOC), the patient conducted a 72-h water-only fast
  • Following the fast, the patient initiated a vitamin/mineral-supplemented ketogenic diet (KD) for 21 days that delivered 900 kcal/day
  • KD (increased to 1,500 kcal/day at day 22
  • the patient received metformin (1,000 mg/day), methylfolate (1,000 mg/day), chloroquine phosphate (150 mg/day), epigallocatechin gallate (400 mg/day), and hyperbaric oxygen therapy (HBOT) (60 min/session, 5 sessions/week at 2.5 ATA)
  • Biomarkers showed reduced blood glucose and elevated levels of urinary ketones with evidence of reduced metabolic activity (choline/N-acetylaspartate ratio) and normalized levels of insulin, triglycerides, and vitamin D
  • This is the first report of confirmed GBM treated with a modified SOC together with KMT and HBOT, and other targeted metabolic therapies
  • Glioblastoma multiforme (GBM) is the most common and malignant of the primary adult brain cancers
  • less than 20% of younger adults generally survive beyond 24 months
  • glucose and glutamine are the primary fuels that drive the rapid growth of most tumors including GBM
  • Glucose drives tumor growth through aerobic fermentation (Warburg effect), while glutamine drives tumor growth through glutaminolysis
  • The fermentation waste products of these molecules, i.e., lactic acid and succinic acid, respectively, acidify the tumor microenvironment thus contributing further to tumor progression
  • Glucose and glutamine metabolism is also responsible for the high antioxidant capacity of the tumor cells thus making them resistant to chemo- and radiotherapies
  • The reliance on glucose and glutamine for tumor cell malignancy comes largely from the documented defects in the number, structure, and function of mitochondria and mitochondrial-associated membranes
  • These abnormalities cause the neoplastic GBM cells to rely more heavily on substrate level phosphorylation than on oxidative phosphorylation for energy
  • dexamethasone not only increases blood glucose levels but also increases glutamine levels through its induction of glutamine synthetase activity
    • Nathan Goodyear
       
      use mannitol instead
  • Calorie restriction and restricted KD are anti-angiogenic, anti-inflammatory, anti-invasive, and also kill tumor cells through a proapoptotic mechanism
  • Evidence also shows that therapeutic ketosis can act synergistically with several drugs and procedures to enhance cancer management improving both progression free and overall survival
  • hyperbaric oxygen therapy (HBOT) increases oxidative stress on tumor cells especially when used alongside therapies that reduce blood glucose and raise blood ketones
  • The glutamine dehydrogenase inhibitor, epigallocatechin gallate (EGCG) is also proposed to target glutamine metabolism
  •  
    Case study of Glioblastoma treated with ketogenic metabolic therapy as an adjuct to modified standard therapy.
Nathan Goodyear

G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications - 0 views

  •  
    To be read
Nathan Goodyear

Intravenously administered vitamin C as cancer therapy: three cases - 0 views

  • peak plasma concentrations obtained intravenously are estimated to reach 14 000 μmol/L, and concentrations above 2000 μmol/L may persist for several hours
  • Emerging in vitro data show that extracellular ascorbic acid selectively kills some cancer but no normal cells by generating hydrogen peroxide
  • Death is mediated exclusively by extracellular ascorbate, at pharmacologic concentrations that can be achieved only by intravenous administration
  • ...6 more annotations...
  • Vitamin C may serve as a pro-drug for hydrogen peroxide delivery to extravascular tissues, but without the presence of hydrogen peroxide in blood
  • not all cancer cells were killed by ascorbic acid in vitro
  • Intravascular hemolysis was reported after massive vitamin C administration in people with glucose-6-phosphate dehydrogenase deficiency
  • Administration of high-dose vitamin C to patients with systemic iron overload may increase iron absorption and represents a contraindication
  • Ascorbic acid is metabolized to oxalate, and 2 cases of acute oxalate nephropathy were reported in patients with pre-existing renal insufficiency given massive intravenous doses of vitamin C
  • Rare cases of acute tumour hemorrhage and necrosis were reported in patients with advanced cancer within a few days of starting high-dose intravenous vitamin C therapy, although this was not independently verified by pathologic review
  •  
    IV vitamin C associated with prolonged survival in 3 patients with different cancers.  Peak serum levels reached 14,000 micromol/L, which levels above the 1,000 micro mol/L (cancer cell cytotoxic threshold) were maintained for hours
Nathan Goodyear

Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer ... - 0 views

  • HCQ, doses for long-term use range between 200 and 400 mg per day.
  • Short-term administration of CQ or HCQ rarely causes severe side effects
  • Short-term administration of CQ or HCQ rarely causes severe side effects
  • ...24 more annotations...
  • bone marrow suppression
  • cardiomyopathy
  • irreversible retinal toxicity
  • hypoglycaemia
  • daily doses up to 400 mg of HCQ or 250 mg CQ for several years are considered to carry an acceptable risk for CQ-induced retinopathies, with the exception of individuals of short stature
  • chronic CQ or HCQ therapy be monitored through regular ophthalmic examinations (3–6 month intervals), full blood counts and blood glucose level checks
  • long-term HCQ exposure, skeletal muscle function and tendon reflexes should be monitored for weakness
  • both CQ and HCQ, specific caution is advised in patients suffering from impaired hepatic function (especially when associated with cirrhosis), porphyria, renal disease, epilepsy, psoriasis, glucose-6-phosphate dehydrogenase deficiency and known hypersensitivity to 4-aminoquinoline compounds
  • CQ and HCQ can effectively increase the efficacy of various anti-cancer drugs
  • CQ can prevent the entrapment of protonated chemotherapeutic drugs by buffering the extracellular tumour environment and intracellular acidic spaces
  • This study recommends an adjuvant HCQ dose of 600 mg, twice daily.
  • HCQ addition was shown to produce metabolic stress in the tumours
  • HCQ (400 mg/day)
  • important effects of CQ and HCQ on the tumour microenvironment
  • The main and most studied anti-cancer effect of CQ and HCQ is the inhibition of autophagy
  • the expression levels of TLR9 are higher in hepatocellular carcinoma, oesophageal, lung, breast, gastric and prostate cancer cells as compared with adjacent noncancerous cells, and high expression is often linked with poor prognosis
  • TLR9-mediated activation of the NF-κB signalling pathway and the associated enhanced expression of matrix metalloproteinase-2 (MMP-2), MMP-7 and cyclo-oxygenase 2 mRNA
  • HCQ can activate caspase-3 and modulate the Bcl-2/Bax ratio inducing apoptosis in CLL, B-cell CLL and glioblastoma cells
  • In triple-negative breast cancer, CQ was shown to eliminate cancer stem cells through reduction of the expression of Janus-activated kinase 2 and DNA methyl transferase 1 [106] or through induction of mitochondrial dysfunction, subsequently causing oxidative DNA damage and impaired repair of double-stranded DNA breaks
  • CQ or HCQ would be considered for use in combination with immunomodulation anti-cancer therapies
  • Therapies used in combination with CQ or HCQ include chemotherapeutic drugs, tyrosine kinase inhibitors, various monoclonal antibodies, hormone therapies and radiotherapy
  • Most studies hypothesise that CQ and HCQ could increase the efficacy of other anti-cancer drugs by blocking pro-survival autophagy.
  • daily doses between 400 and 1200 mg for HCQ are safe and well tolerated, but two studies identified 600-mg HCQ daily as the MTD
  • HCQ is often administered twice daily to limit plasma fluctuations and toxicity
‹ Previous 21 - 39 of 39
Showing 20 items per page