Skip to main content

Home/ Dr. Goodyear/ Group items tagged age-related disease

Rss Feed Group items tagged

Nathan Goodyear

Inflammatory cause of metabolic syndrome via brain stress and NF-κB - 0 views

  • Mechanistic studies further showed that such metabolic inflammation is related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and autophagy defect under prolonged nutritional excess
  • intracellular stress-inflammation process for metabolic syndrome has been established in the central nervous system (CNS) and particularly in the hypothalamus
  • the CNS and the comprised hypothalamus are known to govern various metabolic activities of the body including appetite control, energy expenditure, carbohydrate and lipid metabolism, and blood pressure homeostasis
  • ...56 more annotations...
  • Reactive oxygen species (ROS) refer to a class of radical or non-radical oxygen-containing molecules that have high oxidative reactivity with lipids, proteins, and nucleic acids
  • a large measure of intracellular ROS comes from the leakage of mitochondrial electron transport chain (ETC)
  • Another major source of intracellular ROS is the intentional generation of superoxides by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
  • there are other ROS-producing enzymes such as cyclooxygenases, lipoxygenases, xanthine oxidase, and cytochrome p450 enzymes, which are involved with specific metabolic processes
  • To counteract the toxic effects of molecular oxidation by ROS, cells are equipped with a battery of antioxidant enzymes such as superoxide dismutases, catalase, peroxiredoxins, sulfiredoxin, and aldehyde dehydrogenases
  • intracellular oxidative stress has been indicated to contribute to metabolic syndrome and related diseases, including T2D [72; 73], CVDs [74-76], neurodegenerative diseases [69; 77-80], and cancers
  • intracellular oxidative stress is highly associated with the development of neurodegenerative diseases [69] and brain aging
  • dietary obesity was found to induce NADPH oxidase-associated oxidative stress in rat brain
  • mitochondrial dysfunction in hypothalamic proopiomelanocortin (POMC) neurons causes central glucose sensing impairment
  • Endoplasmic reticulum (ER) is the cellular organelle responsible for protein synthesis, maturation, and trafficking to secretory pathways
  • unfolded protein response (UPR) machinery
  • ER stress has been associated to obesity, insulin resistance, T2D, CVDs, cancers, and neurodegenerative diseases
  • brain ER stress underlies neurodegenerative diseases
  • under environmental stress such as nutrient deprivation or hypoxia, autophagy is strongly induced to breakdown macromolecules into reusable amino acids and fatty acids for survival
  • intact autophagy function is required for the hypothalamus to properly control metabolic and energy homeostasis, while hypothalamic autophagy defect leads to the development of metabolic syndrome such as obesity and insulin resistance
  • prolonged oxidative stress or ER stress has been shown to impair autophagy function in disease milieu of cancer or aging
  • TLRs are an important class of membrane-bound pattern recognition receptors in classical innate immune defense
  • Most hypothalamic cell types including neurons and glia cells express TLRs
  • overnutrition constitutes an environmental stimulus that can activate TLR pathways to mediate the development of metabolic syndrome related disorders such as obesity, insulin resistance, T2D, and atherosclerotic CVDs
  • Isoforms TLR1, 2, 4, and 6 may be particularly pertinent to pathogenic signaling induced by lipid overnutrition
  • hypothalamic TLR4 and downstream inflammatory signaling are activated in response to central lipid excess via direct intra-brain lipid administration or HFD-feeding
  • overnutrition-induced metabolic derangements such as central leptin resistance, systemic insulin resistance, and weight gain
  • these evidences based on brain TLR signaling further support the notion that CNS is the primary site for overnutrition to cause the development of metabolic syndrome.
  • circulating cytokines can limitedly travel to the hypothalamus through the leaky blood-brain barrier around the mediobasal hypothalamus to activate hypothalamic cytokine receptors
  • significant evidences have been recently documented demonstrating the role of cytokine receptor pathways in the development of metabolic syndrome components
  • entral administration of TNF-α at low doses faithfully replicated the effects of central metabolic inflammation in enhancing eating, decreasing energy expenditure [158;159], and causing obesity-related hypertension
  • Resistin, an adipocyte-derived proinflammatory cytokine, has been found to promote hepatic insulin resistance through its central actions
  • both TLR pathways and cytokine receptor pathways are involved in central inflammatory mechanism of metabolic syndrome and related diseases.
  • In quiescent state, NF-κB resides in the cytoplasm in an inactive form due to inhibitory binding by IκBα protein
  • IKKβ activation via receptor-mediated pathway, leading to IκBα phosphorylation and degradation and subsequent release of NF-κB activity
  • Research in the past decade has found that activation of IKKβ/NF-κB proinflammatory pathway in metabolic tissues is a prominent feature of various metabolic disorders related to overnutrition
  • it happens in metabolic tissues, it is mainly associated with overnutrition-induced metabolic derangements, and most importantly, it is relatively low-grade and chronic
  • this paradigm of IKKβ/NF-κB-mediated metabolic inflammation has been identified in the CNS – particularly the comprised hypothalamus, which primarily accounts for to the development of overnutrition-induced metabolic syndrome and related disorders such as obesity, insulin resistance, T2D, and obesity-related hypertension
  • evidences have pointed to intracellular oxidative stress and mitochondrial dysfunction as upstream events that mediate hypothalamic NF-κB activation in a receptor-independent manner under overnutrition
  • In the context of metabolic syndrome, oxidative stress-related NF-κB activation in metabolic tissues or vascular systems has been implicated in a broad range of metabolic syndrome-related diseases, such as diabetes, atherosclerosis, cardiac infarct, stroke, cancer, and aging
  • intracellular oxidative stress seems to be a likely pathogenic link that bridges overnutrition with NF-κB activation leading to central metabolic dysregulation
  • overnutrition is an environmental inducer for intracellular oxidative stress regardless of tissues involved
  • excessive nutrients, when transported into cells, directly increase mitochondrial oxidative workload, which causes increased production of ROS by mitochondrial ETC
  • oxidative stress has been shown to activate NF-κB pathway in neurons or glial cells in several types of metabolic syndrome-related neural diseases, such as stroke [185], neurodegenerative diseases [186-188], and brain aging
  • central nutrient excess (e.g., glucose or lipids) has been shown to activate NF-κB in the hypothalamus [34-37] to account for overnutrition-induced central metabolic dysregulations
  • overnutrition can present the cell with a metabolic overload that exceeds the physiological adaptive range of UPR, resulting in the development of ER stress and systemic metabolic disorders
  • chronic ER stress in peripheral metabolic tissues such as adipocytes, liver, muscle, and pancreatic cells is a salient feature of overnutrition-related diseases
  • recent literature supports a model that brain ER stress and NF-κB activation reciprocally promote each other in the development of central metabolic dysregulations
  • when intracellular stresses remain unresolved, prolonged autophagy upregulation progresses into autophagy defect
  • autophagy defect can induce NF-κB-mediated inflammation in association with the development of cancer or inflammatory diseases (e.g., Crohn's disease)
  • The connection between autophagy defect and proinflammatory activation of NF-κB pathway can also be inferred in metabolic syndrome, since both autophagy defect [126-133;200] and NF-κB activation [20-33] are implicated in the development of overnutrition-related metabolic diseases
  • Both TLR pathway and cytokine receptor pathways are closely related to IKKβ/NF-κB signaling in the central pathogenesis of metabolic syndrome
  • Overnutrition, especially in the form of HFD feeding, was shown to activate TLR4 signaling and downstream IKKβ/NF-κB pathway
  • TLR4 activation leads to MyD88-dependent NF-κB activation in early phase and MyD88-indepdnent MAPK/JNK pathway in late phase
  • these studies point to NF-κB as an immediate signaling effector for TLR4 activation in central inflammatory response
  • TLR4 activation has been shown to induce intracellular ER stress to indirectly cause metabolic inflammation in the hypothalamus
  • central TLR4-NF-κB pathway may represent one of the early receptor-mediated events in overnutrition-induced central inflammation.
  • cytokines and their receptors are both upstream activating components and downstream transcriptional targets of NF-κB activation
  • central administration of TNF-α at low dose can mimic the effect of obesity-related inflammatory milieu to activate IKKβ/NF-κB proinflammatory pathways, furthering the development of overeating, energy expenditure decrease, and weight gain
  • the physiological effects of IKKβ/NF-κB activation seem to be cell type-dependent, i.e., IKKβ/NF-κB activation in hypothalamic agouti-related protein (AGRP) neurons primarily leads to the development of energy imbalance and obesity [34]; while in hypothalamic POMC neurons, it primarily results in the development of hypertension and glucose intolerance
  • the hypothalamus, is the central regulator of energy and body weight balance [
  •  
    Great article chronicles the biochemistry of "over nutrition" and inflammation through NF-kappaB activation and its impact on the brain.
Nathan Goodyear

Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeu... - 0 views

  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • Redox shift is due to Warburg effect and mitochondrial impairment.
  • ...88 more annotations...
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • The cytokine storm is a consequence of mitochondrial dysfunction
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • Lipoic acid, Methylene Blue and Chlorine dioxide relieve COVID-19 spike protein toxicity
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • most diseases display a form of anabolism due to mitochondrial impairment
  • infection by Covid-19 follows a similar pattern
  • chronic inflammation
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • Long-term effects include redox shift and cellular anabolism as a result of the Warburg effect and mitochondrial dysfunction
  • infection by Covid-19 follows a similar pattern
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • unrelenting anabolism leads to the cytokine storm,
  • chronic inflammation
  • chronic inflammation
  • infection by Covid-19 follows a similar pattern
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Lipoic acid and Methylene Blue have been shown to enhance the mitochondrial activity, relieve the Warburg effect and increase catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • Methylene Blue, Chlorine dioxide and Lipoic acid may help reduce long-term Covid-19 effects by stimulating the catabolism
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • direct consequence of redox iMeBalance, itself a consequence of decreased energy yield by the mitochondria
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • mitochondrial dysfunction and increased levels of lactate, which are important characteristics of metabolic shift and Warburg effect in many diseases
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • increased lactate dehydrogenase activity (LDH) was observed in COVID-19 patients
  • almost every disease presents an increased anabolism
  • almost every disease presents an increased anabolism
  • cell division is the most sophisticated way to release entropy
  • cell division is the most sophisticated way to release entropy
    • Nathan Goodyear
       
      Wow
    • Nathan Goodyear
       
      Wow
  • transition from catabolism to anabolism is driven by a redox shift
  • transition from catabolism to anabolism is driven by a redox shift
  • viral spike protein binds to ACE2 receptor of the host cell [22,23].
  • redox signaling plays an important role in regulating immune function and inflammation, and disruptions in this signaling can lead to excessive cytokine production and immune system activation
  • Aging is associated with a poor control of the redox balance
  • thiol/disulfide homeostasis
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • reduced extracellular environment in the elderly and the increased susceptibility to Covid-19 infection
  • Redox signaling tightly modulates the inflammatory response and oxidative stress has been reported in acute Covid-19
  • People at high risk are the elderly, patients suffering from metabolic syndrome such as obesity, or those suffering from chronic diseases such as cancer or inflammation
  • COVID-19 patients with severe disease have higher levels of oxidative stress markers and lower antioxidant levels
  • oxidative stress can activate the NLRP3 inflammasome, which is a protein complex that plays a key role in the cytokine storm
  • inflammation leads to the formation of ROS and RNS, while redox iMeBalance results in cellular damage, which in turn triggers an inflammatory response
  • persistently elevated mtROS triggers endothelial dysfunction and inflammation, which results in a vicious loop involving ROS, inflammation, and mitochondrial dysfunction
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • Damaged mitochondria releasing ROS induce inflammation via the NLRP3 inflammasome
  • reduced environment during the cytokine storm
  • IL-2 is highly up-regulated in Covid-19 patients [37], and IL-2 is known to significantly stimulate the generation of NO in patients
  • Nitric acid is also the key mediator of IL-2-induced hypotension and vascular leak syndrome
  • mitochondrial dysfunction has been linked to the pathogenesis of Covid-19
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • mitochondrial dysfunction triggered by SARS-CoV-2 leads to damage to the mitochondria
  • As catabolism is decreased, entropy is released through anabolism
  • Elevated levels of lactate, a characteristic of the Warburg effect, were also reported in the high-risk Covid-19
  • elevated levels of ventricular lactic acid consistent with oxidative stress
  • A decrease of ΔΨm is implicated in several inflammation-related diseases
  • decrease in ΔΨm in leucocytes from Covid-19 patients
  • vaccinated with RNA or DNA vaccines triggering the synthesis of the viral spike protein in human cells
  • viral reactivation in varicella-zoster virus [55] or hepatitis [56], coagulopathy and resulting stroke and myocarditis following both DNA-based vaccines [57] and RNA-based vaccines
  • Covid-19, mitochondrial impairment
  • characteristic of the Warburg effect is present in almost every disease and appears to be a central feature in most of the hallmarks of cancer
  • inflammation, mitochondrial dysfunction and increased lactate concentrations in the extracellular fluid
  • In Covid-19, like any inflammation, there is a metabolic rewiring where cells rely on glycolysis
  • As the mitochondria are impaired, the infected cell cannot catabolize efficiently. It will release lactic acid in the blood stream
    • Nathan Goodyear
       
      Mitochondrial impairment
  • Striking similarities are seen between cancer, Alzheimer's disease and Covid-19, all related to the Warburg effect
  • Cancer, inflammation, Alzheimer's, and Parkinson's diseases share a common peculiarity, the inability of the cell to export entropy outside the body in the harmless form of heat
    • Nathan Goodyear
       
      Entropy: lack of order or predictability; gradual decline into disorder.
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB relieves the Warburg effect [87], improves memory [77], is active in the treatment of depressive episodes [79,80] and reduces the importance of ischemic strokes
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • MEB has been shown to inhibit SARS-Cov-2 replication in vitro
  • It has been shown that Covid-19-patients treated with MEB, have a significant reduction in hospital stay duration and mortality
  • MeB is an acceptor-donor molecule
  • MeB + can take a pair of electrons (of H atoms) and MeBH can release this pair easily, so that MeB is partially recycled like a catalyst
  • MeB acts as an electron bridge between a donor (FADH2, FMNH, NADH) and an acceptor (complex IV of ETC or oxygen itself)
  • As a coenzyme of pyruvate dehydrogenase (PDH), alpha-lipoic acid (ALA) initiates the formation of acetyl-CoA to feed the TCA cycle
  • ALA enhances the catabolism of carbon. cycle and therefore may reduce the Warburg effect and consequently, lactate production
  • Methylene Blue plays a similar role after the TCA cycle, by carrying electrons to complex IV of the electron transport chain
  • Drugs such as lipoic acid and MeB, which target the metabolism, decrease the redox shift by increasing catabolism
fitspresso

https://www.sightcare-co.com/ - 0 views

  •  
    Sight Care | Official Site sightcare-co.com · by Sight Care Sight Care Only $49/Bottle Limited Time Offer! Sight Care Special Deal + Special 67% Discount Save $600 + 180 Days Money Back Guarantee #1.The Sight Care vision supplement is a dietary supplement for helping you improve your vision and brain health. Sight Care eye supplements are formulated to provide a synergistic blend of vitamins, minerals, antioxidants, and other bioactive compounds that are essential for maintaining healthy vision Regular Price: 147/per bottle Only for: $49/per bottle What Is Sight Care? This powerful vision support supplement is made with a unique blend of natural ingredients and plant extracts that work together synergistically to deliver numerous benefits for your brain and eye health. With Sight Care, you can expect to experience increased energy levels, improved eyesight, and an overall revitalized sense of well-being. Taking care of your vision health is not just about seeing clearly; it's also about maintaining your overall brain health. As we age, our vision deteriorates, and our eyes and brain can experience a decline in function, but there are steps you can take to support your visual and cognitive health. Regular eye exams are crucial for detecting and treating vision problems early on, and making healthy choices such as eating a nutritious diet and exercising regularly can also help. However, with busy schedules, it can be difficult to find the time to devote to a healthy lifestyle. This is where the Sight Care supplement comes in. It's designed to support both vision and brain health with its blend of natural ingredients that have been shown to promote healthy vision and cognitive function You must not compromise your eye health for momentary exhilaration. If you are glued to digital screens day and night, you must take measures to prevent eye diseases like age-related macular degeneration. The SightCare vision supplement has been made using 100% natura
Nathan Goodyear

PLOS ONE: Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular ... - 0 views

  • Studies in both humans and rodents, however, suggest that low testosterone is due to age-related lesions in testes rather than irregular luteinizing hormone metabolism
  • Various dietary factors and diet-induced obesity have been shown to increase the risk for late onset male hypogonadism and low testosterone production in both humans and mice
  • Testosterone deficiency and metabolic diseases such as obesity appear to inter-digitate in complex cause-and-effect relationships
  • ...28 more annotations...
  • dietary supplementation of aged mice with the probiotic bacterium Lactobacillus reuteri makes them appear to be younger than their matched untreated sibling mice
  • These results indicate that gut microbiota induce modulation of local gastrointestinal immunity resulting in systemic effects on the immune system which activate metabolic pathways that restore tissue homeostasis and overall health
  • all these studies we consistently observed that young and aged mice consuming purified L. reuteri organisms had particularly large testes and a dominant male behavior.
  • The testes of probiotic-fed aged mice were rescued from both seminiferous tubule atrophy and interstitial Leydig cell area reduction typical of the normal aging process. Preservation of testicular architecture despite advanced age or high-fat diet coincided with remarkably high levels of circulating testosterone. The beneficial effects of probiotic consumption were recapitulated by the depletion of the pro-inflammatory cytokine Il-17.
  • feeding of L. reuteri consistently increased the gonadal weights, consumption of a non-pathogenic strain of Escherichia coli (E. coli) K12 organisms did not affect testicular weight
  • mice with dietary L. reuteri supplements were rescued from diet-induced obesity and had normal body weight and lean physique
  • Despite the comparable numbers of ST profiles, we determined that testes from L. reuteri-treated mice had increased ST cross-sectioned profiles
  • the probiotic organism induced prominent Leydig cell accumulations in the interstitial tissue between the ST's
  • The probiotic-associated increase of interstitial Leydig cell areas was sustained with advancing age at 7 (CD vs CD+LR, P = 0.0025; CD+E.coli vs CD+LR, P = 0.0251) and 12 months
  • mice eating L. reuteri had profoundly increased levels of circulating testosterone regardless of the type of diet they consumed
  • blocking pro-inflammatory Il-17 signaling entirely recapitulates the beneficial effects of probiotics
  • previous studies we found that dietary probiotics counteract obesity [19] and age-related integumentary pathology [18] at least in part by down-regulating systemic pro-inflammatory IL-17A-dependent signaling
  • Testes histomorphometry and serum androgen concentration data were both suggestive of a probiotic-associated up-regulation of spermatogenesis in mice
  • Lactobacillus reuteri we discovered that aging male animals had larger testes compared to their age-matched controls
  • xamined testes of probiotic microbe-fed mice and found that they had less testicular atrophy coinciding with higher levels of circulating testosterone compared to their age-matched controls
  • Similar testicular health benefits were produced using systemic depletion of the pro-inflammatory cytokine Il-17 alone, implicating a chronic inflammatory pathway in hypogonadism
  • One specific aspect of this paradigm is reciprocal activities of pro-inflammatory Th-17 and anti-inflammatory Treg cells
  • Feeding of L. reuteri organisms was previously shown to up-regulate IL-10 levels and reduce levels of IL-17 [19] serving to lower systemic inflammation
  • insufficient levels of IL-10 may increase the risk for autoimmunity, obesity, and other inflammatory disease syndromes
  • Westernized diets are also low in vitamin D, a nutrient that when present normally works together with IL-10 to protect against inflammatory disorders
  • Physiological feedback loops apparently exist between microbes, host hormones, and immunity
  • The hormone testosterone has been shown to act directly through androgen receptors on CD4+ cells to increase IL-10 expression
  • studies in both humans and rodents suggest that hypogonadism is due to age-related lesions in testes rather than irregular LH metabolism
  • We postulate that probiotic gut microbes function symbiotically with their mammalian hosts to impart immune homeostasis to maintain systemic and testicular health [34]–[35] despite suboptimal dietary conditions.
  • Dietary factors and diet-induced obesity were previously shown to increase risk for age-associated male hypogonadism, reduced spermatogenesis, and low testosterone production in both humans and mice [2]–[4], [8]–[11], [14]–[17], phenotypic features that in this study were inhibited by oral probiotic therapy absent milk sugars, extra protein, or vitamin D supplied in yogurt.
  • Similar beneficial effects of probiotic microbes on testosterone levels and sperm indices were reported in male mice that had been simultaneously supplemented with selenium
  • L. reuteri-associated prevention of age- and diet-related testicular atrophy correlates with increased numbers and size of Leydig cells
  • the initial changes of testicular atrophy begin to occur in mice from the age of 6 moths onwards [7] and indicates that the trophic effect of L. reuteri on Leydig cells is a key event which precedes and prevents age-related changes in the testes of mice. This effect is reminiscent of earlier studies describing Leydig cell hyperplasia and/or hypertrophy in the mouse and the rat testis that were achievable by the administration of gonadotropins, including human chorionic gonadotropin, FSH and LH
  •  
    Fascinating study on how the addition of Lactobacillus reuteri increased Testicular size, prevented testicular atrophy, increased serum Testosterone production and protected against diet-induced/obesity-induced hypogonadism.  This was a mouse model
Nathan Goodyear

Telomerase at the intersection of cancer and aging - 0 views

  • The anti-aging role of telomerase has been demonstrated to be largely mediated by its canonical role in elongating telomeres, which prevents the accumulation of critically short telomeres and loss of tissue homeostasis
  • Short telomeres, and subsequent DDR activation, could occur both in cancer and aging
  • increased abundance of short telomeres correlates with higher genomic instability and decreased longevity in various organisms, including mice, zebrafish, and yeast
  • ...15 more annotations...
  • mice deficient for telomerase or for telomere binding proteins are characterized by accelerated age-related defects
  • In humans, short telomeres are considered good indicators of an individual’s health status and correlate with both genetic and environmental factors
  • Although recent findings strongly support the idea that short telomeres drive several age-related diseases 38 we cannot exclude the possibility that in some situations short telomeres may be a consequence of the disease itself.
  • the current view is that telomerase deficiency may contribute to the early steps of cancer development by fueling chromosomal instability, while subsequent activation of telomerase may be necessary to allow tumor growth and tumor progression towards more malignant states
  • telomerase activation can be an early event in cancer, it is not necessary for cancer initiation
  • telomerase can stimulate tumor progression by ensuring maintenance of telomeres above a critically short length, thus preventing induction of cellular senescence or apoptosis
  • Almost all human cancers present activation of telomerase as a hallmark, most likely as a mechanism to allow unlimited cell proliferation of tumor cells
  • recent evidence demonstrated that short telomeres alone could lead to genomic instability and cancer
  • Getting rid of telomerase can also be problematic; the lack of telomerase could lead to increased chromosomal instability, which in turn could be at the basis for cancer initiation when tumor suppressor barriers are bypassed
  • telomerase activation is a potential therapeutic strategy for the treatment of age-related diseases
  • telomerase activation in adult or old mice by means of a gene therapy strategy was shown to be sufficient to improve metabolic fitness, neuromuscular capacity, and prevent bone loss, as well as significantly increase both median and maximum longevity, without increased cancer incidence
  • These studies suggest that telomerase expression could be considered a feasible approach to reverse tissue dysfunction and extend healthy lifespan without increasing cancer incidence
  • humans almost completely lose telomerase activity from somatic tissues in the adulthood
  • a change of paradigm seems to be occurring in telomerase biology, with a switch from viewing telomerase as fueling cancer to reversing aging
  • Telomerase expression in a background of high levels of tumor suppressors or in aged organisms seems to prevent its expected pro-cancer activity and yet it still functions as an anti-aging factor
  •  
    Telomerase activity and longer telomere length is shown to correlated inversely with many chronic diseases of aging.  In contrast, telomerase activity is found to be involved in carcinogenesis.  Increased carcinogenic potential of telomerase activity has not borne out in studies.  In addition, increased CD8 cell activity as a result of telomerase activation will actually decrease carcinogenic potential via NK activation.
Nathan Goodyear

Nature Clinical Practice Endocrinology & Metabolism | Testosterone and ill-health in ag... - 0 views

  • Levels of total and bioavailable testosterone and SHBG were reported to be inversely correlated with the prevalence of the metabolic syndrome in men aged 40–80 years
  • as were total testosterone and SHBG in men aged 65–96 years
  • and in a cross-sectional analysis of a large cohort of non-diabetic men aged 70–89 years
  • ...18 more annotations...
  • In longitudinal studies, decreased levels of total testosterone and SHBG predicted an increased incidence of metabolic syndrome in nonobese men
  • Free testosterone level is not associated with the prevalence of metabolic syndrome in middle-aged and older men
  • Levels of free, bioavailable and total testosterone are lower in men with T2DM than in age-matched controls,34, 35 and decreased total testosterone level predicts incident T2DM in middle-aged men.
  • men with T2DM commonly have low total or free testosterone levels
  • Total, bioavailable and free testosterone levels are inversely correlated with fasting insulin level and insulin resistance in middle-aged men without T2DM
  • total testosterone is positively correlated with insulin sensitivity in men with normal or impaired glucose tolerance or T2DM
  • low SHBG level is more strongly associated with metabolic syndrome than low total testosterone in aging men
  • the recognized association between low SHBG level and insulin resistance
  • Low levels of SHBG are also associated with smaller, denser LDL-cholesterol molecules in nondiabetic men,58 and were found to predict increased cardiovascular disease mortality in one study of older men
  • Low levels of SHBG might reflect obesity, insulin resistance and overall poor health
  • Compared with those who have normal testosterone levels, men aged 40 years or more with total testosterone levels <9.8 nmol/l or elevated LH level have greater CIMT
  • In men aged 73–94 years, total testosterone was inversely correlated with CIMT
  • a prospective analysis of men aged 73–91 years, progression of CIMT was not related to total testosterone level, but it was inversely related to free testosterone level
  • A study of men aged 55 years or more found that those with total and bioavailable testosterone levels in the highest tertile had a lower risk of severe aortic atherosclerosis (detected by radiography as abdominal aortic calcification) than those with the lowest testosterone levels.
  • a large study of men aged 69–80 years, those with total or free testosterone in the lowest quartile had increased odds of lower-extremity peripheral arterial disease
  • the possibility of reverse causation has to be considered, as systemic illness can result in decreased testosterone levels
  • previous case–control studies and longitudinal studies have failed to identify low testosterone levels as strong predictors of clinically significant coronary disease
  • Reviews of trials on testosterone therapy in men with either low or low-to-normal testosterone levels have not shown consistent beneficial effects either on lipid profiles or on actual cardiovascular events.24, 54, 55 These trials, however, have not been designed or powered to detect treatment-related differences in cardiovascular outcome
  •  
    Declining Testosterone or low Testosterone is clearly associated with poor health in men.   Very nice review of the association between low Testosterone and metabolic dysfunction.  Low T is associated with increased metabolic syndrome, Diabetes, weight gain, insulin resistance...
Nathan Goodyear

PLOS ONE: Increased Risk of Non-Fatal Myocardial Infarction Following Testosterone Ther... - 0 views

  • For all TT prescription subjects combined, the post/pre prescription rate ratio for MI (RR)was 1.36
  • In men aged 65 years and older the RR was 2.19 (1.27, 3.77), while in men under age 65 years the RR was 1.17
  • increasing RR with increasing age.
  • ...20 more annotations...
  • The RRs were 0.95 (0.54, 1.67) under 55 years
  • 1.35 (0.77, 2.38) at 55–59
  • 1.29 (0.71, 2.35) at 60–64,
  • 1.35 (0.44, 4.18) at 65–69, 1.62
  • 3.43 (1.54, 7.66) at 75 years and older
  • The adjusted post/pre RR for PDE5I across all ages was 1.08
  • For TT prescription, in men under age 65 years, the RR was 2.90 (1.49, 5.62) for those with a history of heart disease and 0.90 (0.61, 1.34) for those without
  • In men aged 65 year and older, the RR was 2.16 (0.92, 5.10) for those with a history of heart disease and 2.21 (1.09, 4.45) for those without.
  • Among men aged 65 years and older, we observed a two-fold increase in the risk of MI in the 90 days after filling an initial TT prescription
  • Among younger men with a history of heart disease, we observed a two to three-fold increased risk of MI in the 90 days following an initial TT prescription and no excess risk in younger men without such a history
  • Among older men, the two-fold increased risk was associated with TT prescription regardless of cardiovascular disease history
  • our own findings appear consistent with a higher frequency of thrombotic events following TT prescription among men with more extensive coronary vascular disease.
  • Our findings are consistent with a recent meta-analysis of placebo-controlled randomized trials of testosterone therapy lasting 12 or more weeks among mainly older men, which reported that testosterone therapy increased the risk of adverse cardiovascular-related events (OR = 1.54, 95%CI:1.09, 2.18), as well as serious adverse cardiovascular-related events (OR = 1.61, 95%CI:1.01, 2.56) which included myocardial infarction along with other conditions
  • This association appeared unrelated to average baseline testosterone level (p = 0.70) but varied by source of funding (p = 0.03), with a stronger summary effect in a meta-analysis of studies not funded by the pharmaceutical industry (OR = 2.06, 95%CI:1.34, 3.17) compared with studies funded by the pharmaceutical industry
    • Nathan Goodyear
       
      This supports prior analysis that studies done by pharmaceutical corps will be more favorable to their product(s) than those independently funded.  This is called bias.
  • the evidence supports an association between testosterone therapy and risk of serious, adverse cardiovascular-related events–including non-fatal myocardial infarction–in men
  • there is some evidence that low endogenous testosterone levels may also be positively associated with cardiovascular events
  • effects of endogenous and exogenous testosterone may differ. Exogenous testosterone (TT) is associated with physiologic changes that predispose to clotting and thrombotic disorders including increased blood pressure [18], polycythemia [19], reductions in HDL cholesterol [18], [20], and hyperviscosity of the blood and platelet aggregation. [20]–[23]; TT also increases circulating estrogens [24], [25] which may play a role in the observed excess of adverse cardiovascular-related events, given that estrogen therapy has been associated with this excess in both men and women
  • did not include information on the serologic or diagnostic indications for treatment.
  • no association between PDE5I prescriptions and the risk of MI
  • Recently TT has been increasing extraordinarily rapidly, including among younger men and among those without hormone measurement
  •  
    New cohort study finds increased risk of Testosterone in men > 65 and those : these are based in marketing-based medicine not evidence based medicine.
Nathan Goodyear

The development of mitochondrial medicine - 0 views

  • n addition to being a primary cause of disease, mitochondrial DNA mutations and impaired oxidation have now been found to occur as secondary phenomena in aging as well as in age-related degenerative diseases such as Parkinson, Alzheimer, and Huntington diseases, amyotrophic lateral sclerosis and cardiomyopathies, atherosclerosis, and diabetes mellitus.
  •  
    good discussion on primary and secondary mitochondrial diseases.  Aging and age-related disease are the result of secondary mitochondrial dysfunction
Nathan Goodyear

aging - Telomere Science Library - 0 views

  •  
    great resource for Telomere research.  Telomere shortening is clearly associated with aging and age related diseases.  Further research continues on the role played by Telomeres in ageing related diseases
Nathan Goodyear

Molecular inflammation: Underpinnings of aging and age-related diseases 10.1016/j.arr.2... - 0 views

  •  
    chronic inflammation appears to be the major player in aging and age-related chronic diseases
Nathan Goodyear

Sex steroids and cardiovascular disease Yeap BB - Asian J Androl - 0 views

  • Levels of SHBG are higher in older men, therefore levels of free T decline more steeply than total T as men's age increases.
  • calculations based on mass action equations may not reflect precisely free T measured using a reference method
  • free T declines more steeply with age than total T in both cross-sectional [35] and longitudinal studies, [36] as does free E2 in comparison to total E2
  • ...22 more annotations...
  • T may slow development of or progression of atherosclerosis by modulating effects on insulin resistance, inflammation, endothelial function, preclinical atherosclerosis or the vasculature.
  • these cross-sectional and longitudinal studies support a relationship between low circulating T with CIMT and higher E2 with its progression
  • lower levels of T are biomarkers for aortic vascular disease
  • circulating free T was negatively associated with the presence of AAA
  • luteinizing hormone (LH) was positively associated.
  • low levels of total or bioavailable T were associated with aortic atherosclerosis manifested as calcified deposits detected by radiography
  • Men with total or free T in the lowest quartile had increased adjusted ORs for PAD defined as ABI <0.90, as did men with free E2 in the highest quartile of values
  • The apparent association of SHBG with intermittent claudication reflects the correlation of total T with SHBG, while the contribution of E2 to risk of PAD remains unclear
  • men with total T in the lowest quartile of values (<11.7 nmol l−1 ) experienced an increased incidence of stroke or transient ischemic attack
  • lower total T with increased incidence of CVD events
  • cohort studies in mostly older men have supported the association of lower androgen levels with higher mortality
  • lower total or free T levels were associated with mortality in older men, but with discordant results for cause-specific mortality and for associations of E2
  • several large studies identifying lower endogenous levels of total or free T as independent predictors of all-cause or CVD-related deaths in middle-aged and older men
  • T exhibits anti-inflammatory effects, enhances flow-mediated brachial artery reactivity, and reduces arterial stiffness
  • Short-term T therapy had a beneficial effect on exercise-induced myocardial ischemia in middle-aged men with coronary artery disease or chronic stable angina, [95],[96],[97] and reduced angina frequency in older men with diabetes and coronary artery disease
  • T therapy resulted in an increase in treadmill test duration and time to ST segment depression
  • there are interventional studies supporting a protective effect of exogenous T against myocardial ischemia in men with coronary artery disease
  • employ conservative doses
    • Nathan Goodyear
       
      This dosing is 100 fold higher then peak production of a  young man at 20-22.
  • Observational studies indicate that lower levels of endogenous T in older men are associated with the presence of carotid atherosclerosis, aortic and peripheral vascular disease, and incidence of CVD events and mortality
  • Interventional studies have shown beneficial effects of exogenous T on vascular function and on exercise-induced myocardial ischemia in men with coronary artery disease
    • Nathan Goodyear
       
      the therapies employed in these studies were massively overdosed.
  •  
    Nice review of all the sex hormones and their relationship to CVD in men.  
Nathan Goodyear

Testosterone level in men with type 2 diabetes mellitus and related metabolic... - 0 views

  • defined by consistent symptoms and signs of androgen deficiency, and an unequivocally low serum testosterone level
  • the threshold serum testosterone level below which adverse clinical outcomes occur in the general population is not known
  • most population-based studies use the serum testosterone level corresponding to the lower limit, quoted from 8.7 to 12.7 nmol/L, of the normal range for young Caucasian men as the threshold
    • Nathan Goodyear
       
      this equals 251 to 366 in serum Total Testosterone
  • ...57 more annotations...
  • Researchers tried to examine whether serum total or free testosterone would be a better/more reliable choice when studying the effect of testosterone. The results were mixed. Some reported significant associations of both serum total and free testosterone level with clinical parameters25, whereas others reported that only serum free testosterone26 or only serum total testosterone6 showed significant associations.
  • −0.124 nmol/L/year in serum total testosterone
    • Nathan Goodyear
       
      this equates to a 4 ng/dl decline annually in total Testosterone.
  • In experimental studies, androgen receptor knockout mice developed significant insulin resistance rapidly
  • In mouse models, testosterone promoted differentiation of pluripotent stem cells to the myogenic lineage
  • testosterone decreased insulin resistance by enhancing catecholamine induced lipolysis in vitro, and reducing lipoprotein lipase activity and triglyceride uptake in human abdominal tissue in vivo
  • by promoting lipolysis and myogenesis, testosterone might lead to improved insulin resistance
  • testosterone regulated skeletal muscle genes involved in glucose metabolism that led to decreased systemic insulin resistance
  • In the liver, hepatic androgen receptor signaling inhibited development of insulin resistance in mice
  • independent and inverse association of testosterone with hepatic steatosis shown in a cross-sectional study carried out in humans
  • In short, androgen improves insulin resistance by changing body composition and reducing body fat.
  • Although a low serum testosterone level could contribute to the development of obesity and type 2 diabetes through changes in body composition, obesity might also alter the metabolism of testosterone
  • In obese men, the peripheral conversion from testosterone to estrogen could attenuate the amplitude of luteinizing hormone pulses and centrally inhibit testosterone production
  • leptin, an adipokine, has been shown to be inversely correlated with serum testosterone level in men
  • Leydig cells expressed leptin receptors and leptin has been shown to inhibit testosterone secretion, suggesting a role of obesity and leptin in the pathogenesis of low testosterone
    • Nathan Goodyear
       
      So what is "unequivocal"?
  • Baltimore Longitudinal Study of Aging (BLSA) cohort made up of 3,565 middle-class, mostly Caucasian men from the USA, the incidence of low serum total testosterone increased from approximately 20% of men aged over 60 years, 30% over 70 years, to 50% over 80 years-of-age
  • 30–44% sex hormone binding globulin (SHBG)-bound testosterone and 54–68% albumin-bound testosterone
  • As the binding of testosterone to albumin is non-specific and therefore not tight, the sum of free and albumin-bound testosterone is named bioavailable testosterone, which reflects the hormone available at the cellular level
  • Serum total testosterone is composed of 0.5–3.0% of free testosterone unbound to plasma proteins
  • alterations in SHBG concentration might affect total serum testosterone level without altering free or bioavailable testosterone
  • listed in Table​T
  • A significant, independent and longitudinal effect of age on testosterone has been observed with an average change of −0.124 nmol/L/year in serum total testosterone28. The same trend has been shown in Europe and Australia
  • Asian men residing in HK and Japan, but not those living in the USA, had 20% higher serum total testosterone than in Caucasians living in the USA, as shown in a large multinational observational prospective cohort of the Osteoporotic Fractures in Men Study
  • subjects with chronic diseases consistently had a 10–15% lower level compared with age-matched healthy subjects
  • In Caucasians, the mean serum total testosterone level for men in large epidemiological studies has been reported to range from 15.1 to 16.6 nmol/L
  • Asians, higher values, ranging from 18.1 to 19.1 nmol/L, were seen in Korea and Japan
  • Chinese middle-aged men reported a similar mean serum testosterone level of 17.1 nmol/L in 179 men who had a family history of type 2 diabetes and 17.8 nmol/L in 128 men who had no family history of type 2 diabetes
  • The reduction of total testosterone was 0.4% per year in both groups
  • HK involving a cohort of 1,489 community-dwelling men with a mean age of 72 years, a mean serum total testosterone of 19.0 nmol/L was reported
  • pro-inflammatory factors, such as tumor necrosis factor-α in the testes, could locally inhibit testosterone biosynthesis in Leydig cells47, and testosterone treatment in men was shown to reduce the level of tumor necrosis factor-α
  • In Asians, a genetic deletion polymorphism of uridine diphosphate-glucuronosyltransferase UGT2B17 was associated with reduced androgen glucuronidation. This resulted in higher level of active androgen in Asians as compared to Caucasians, as Caucasians' androgen would be glucuronidated into inactive forms faster.
  • Compared with Caucasians, the frequency of this deletion polymorphism of UGT2B17 was 22-fold higher in Asian subjects
  • Other researchers have suggested that environmental, but not genetic, factors influenced serum total testosterone
  • The basal and ligand-induced activity of the AR is inversely associated with the length of the CAG repeat chain
  • In the European Male Aging Study, increased estrogen/androgen ratio in association with longer AR CAG repeat was observed
  • a smaller number of AR CAG repeat had been shown to be associated with benign prostate hypertrophy and faster prostate growth during testosterone treatment
  • In India, men with CAG ≤19 had increased risk of prostate cancer
  • the odds of having a short CAG repeat (≤17) were substantially higher in patients with lymph node-positive prostate cancer than in those with lymph node-negative disease or in the general population
  • assessing the polymorphism at the AR level could be a potential tool towards individualized assessment and treatment of hypogonadism.
  • In elderly men, there was reduced testicular response to gonadotropins with suppressed and altered pulsatility of the hypothalamic pulse generator
  • a significant, independent and longitudinal effect of age on serum total testosterone level had been observed
  • A significant graded inverse association between serum testosterone level and insulin levels independent of age has also been reported in Caucasian men
  • Low testosterone is commonly associated with a high prevalence of MES
  • most studies showed that changes in serum testosterone level led to changes in body composition, insulin resistance and the presence of MES, the reverse might also be possible
  • MES predicted a 2.6-fold increased risk of development of low serum testosterone level independent of age, smoking and other potential confounders
  • Other prospective studies have shown that development of MES accelerated the age-related decline in serum testosterone level
  • In men with type 2 diabetes, changes in serum testosterone level over time correlated inversely with changes in insulin resistance
  • weight loss by either diet control or bariatric surgery led to a substantial increase in total testosterone, especially in morbidly obese men, and the rise in serum testosterone level was proportional to the amount of weight lost
  • To date, published clinical trials are small, of short duration and often used pharmacological, not physiological, doses of testosterone
  • In the population-based Osteoporotic Fractures in Men Study cohort from Sweden, men in the highest quartile of serum testosterone level had the lowest risk of cardiovascular events compared with men in the other three quartiles (hazard ratio [HR] 0.70
  • low serum total testosterone was associated with a significant fourfold higher risk of cardiovascular events when comparing men from the lowest testosterone tertile with those in the highest tertile
  • Shores et al. were the first to report that low serum testosterone level, including both serum total and free testosterone, was associated with increased mortality
  • low serum total testosterone predicted increased risk of cardiovascular mortality with a HR of 1.38
  • low serum total testosterone increased all-cause (HR 1.35, 95% CI 1.13–1.62, P < 0.001) and cardiovascular mortality (HR 1.25
  • European Association for the Study of Diabetes 2013 suggested there was an inverse relationship between serum testosterone level and acute myocardial infarction
  • Diabetic men in the highest quartile of serum total testosterone had a significantly reduced risk of acute MI when compared with those in the lower quartiles
  • serum total testosterone level in the middle two quartiles at baseline predicted reduced incidence of death compared with having the highest and lowest levels
  •  
    Nice review of Testosterone levels and some of the evidence linking Diabetes with low T.  However, the conclusion by the authors regarding what is causing the low T in men with Diabetes is baffling.  The literature does not point to one cause, it is clearly multifactorial--obesity, inflammation, high aromatase activity...I would suggest the authors continue their readings in the manner.
Nathan Goodyear

Testosterone deficiency syndrome and cardiovascular health: An assessment of beliefs, k... - 0 views

  • The vast majority (88%) did not screen cardiac patients for TDS.
  • Testosterone deficiency has a prevalence of 7% in the general population, rising to 20% in elderly males
  • Males with CAD have lower testosterone levels than those with normal coronary angiograms of the same age,5 suggesting that the prevalence of testosterone deficiency is much higher in the CAD population
  • ...14 more annotations...
  • Men with hypertension, another established risk factor for CAD, have lower testosterone compared to normotensive men
  • Recent meta-analyses showed that testosterone levels are generally lower among patients with metabolic syndrome, regardless of the various definitions of metabolic syndrome that are used
  • Testosterone (total and bioavailable) and sex-hormone binding globulin (SHBG) are inversely associated with the prevalence of metabolic syndrome in men between the ages of 40 and 80, and this association persists across racial and ethnic backgrounds
  • ower levels of testosterone and SHBG predict a higher incidence of metabolic syndrome.
  • Low testosterone levels have been related to increased insulin resistance and cardiovascular mortality,12 even in the absence of overt type 2 diabetes mellitus.
  • testosterone levels (total and bioavailable) in middle-aged men are inversely correlated with insulin resistance
  • The Massachusetts Male Aging Study (MMAS) demonstrated that low levels of testosterone and SHBG are independent risk factors for the development of type 2 diabetes,
  • Andropausal men (age 58 ± 7 years) have a higher maximal carotid artery intima-media thickness
  • There is an inverse linear correlation between body mass index (BMI) and wait-to-hip ratio with testosterone and insulin-like growth factor-1 levels.
  • Testosterone supplementation for 1 year in hypogonadal men has been shown to cause a significant improvement in body weight, BMI, waist size, lipid profile, and C-reactive protein levels
  • TRT for 3 months in hypogonadal men with type 2 diabetes significantly improved fasting insulin sensitivity, fasting blood glucose and glycated hemoglobin.
  • Testosterone replacement can improve angina symptoms and delay the onset of cardiac ischemia, likely through a coronary vasodilator mechanism
  • ADT is associated with an increased risk of cardiovascular events, including myocardial infarction and cardiovascular mortality.
  • ADT significantly increases fat mass, decreases lean body mass,29,30 increases fasting plasma insulin and decreases insulin sensitivity31 and increases serum cholesterol and triglyceride levels
  •  
    Startling study on the knowledge of Testosterone and cardiovascular disease in general practitioners and cardiologists in Canada.  Eight-eight percent did not screen patients with cardiovascular disease for low Testosterone.  A whopping 67% of physicians did not know that low T was a risk factor for cardiovascular disease, yet 62% believed Testosterone would increase exercise tolerance. The lack of knowledge displayed by physicians today is staggering and is an indictment of the governing bodies.  This was a survey conducted in Canada so there are obvious limitations to the strength/conclusion of this study.
Nathan Goodyear

Mitochondrial medicine for aging and neurodegenera... [Neuromolecular Med. 2008] - PubM... - 0 views

  • This article discusses critical issues of mitochondria causing dysfunction in aging and neurodegenerative diseases, and discusses the potential of developing mitochondrial medicine, particularly mitochondrially targeted antioxidants, to treat aging and neurodegenerative diseases.
  •  
    Great review of mitochondrial medicine to treat age-related and neurodegenerative disease
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Oxidative Stress and the Aging Brain: From Theory to Prevention - Brain Aging - NCBI Bo... - 0 views

  •  
    Must read on the free radical theory of aging to application of disease prevention as it relates to neurodegenerative disease
Nathan Goodyear

Leukocyte Telomere Length and Cardiovascular Disease in the Cardiovascular Health Study - 0 views

  •  
    Telomere length may be related to diseases of aging.  All related to oxidative stress.
Nathan Goodyear

Molecular Inflammation as an Underlying Mechanism of the Aging Process and Age-related ... - 0 views

  •  
    inflammation and aging.
Nathan Goodyear

The origins of age-related proinflammatory state - 0 views

  •  
    aging found to be associated with a rise in inflammatory markers.  This leads to the theory that age-related diseases are in part due to chronic inflammation
1 - 20 of 29 Next ›
Showing 20 items per page