Skip to main content

Home/ About The Indian Ocean/ Group items tagged atoll

Rss Feed Group items tagged

Jérôme OLLIER

The Effect of Deep Oceanic Flushing on Water Properties and Ecosystem Functioning Withi... - 0 views

  •  
    Within atolls, deep water channels exert significant control over local hydrodynamic conditions; which are important drivers of planktonic distributions. To examine planktonic responses to oceanography, this study tested the effect of proximity and exposure to deep oceanic flushing through these channels on water properties and planktonic assemblages across four atolls (Diego Garcia, Salomon, Egmont, and Peros Banhos) in the British Indian Ocean Territory Marine Reserve. As this is the largest, most isolated and sparsely inhabited atoll complex in the world, it provides the perfect experimental conditions to test the effect of oceanic flushing without confounding factors related to anthropogenic development. Results are discussed in the context of ecosystem functioning. A total of 30 planktonic taxa and 19,539 individuals were identified and counted. Abundance was significantly different between atolls and significantly greater within inner regions in all atolls except southeast Egmont. Planktonic assemblage composition significantly differed between atolls and between inner and outer stations; exhibiting higher similarity between outer stations. Within outer stations of Diego Garcia, Peros Banhos, and Egmont, evidence suggesting oceanic flushing of cold, saline, and dense water was observed, however a longer time series is required to conclusively demonstrate tidal forcing of this water through deep water channels. Planktonic variability between inner and outer atoll regions demonstrates that broad comparisons between oceanic and lagoon regions fail to capture the complex spatial dynamics and hydrodynamic interactions within atolls. Better comprehension of these distributional patterns is imperative to monitor ecosystem health and functioning, particularly due to increasing global anthropogenic pressures related to climate change. The extensive coral bleaching described in this paper highlights this concern.
Jérôme OLLIER

Via @WhySharksMatter - Boom-and-bust cycles of holothurian (sea cucumber) populations i... - 0 views

  •  
    1 - The Chagos Archipelago is a remote Indian Ocean atoll of international conservation significance. Holothurians (sea cucumbers) are a major resource and influence reef health. Past populations have fluctuated from poaching and natural events. 2 - Visual censuses of holothurians were conducted in 62 shallow-water transects within four atolls of Chagos in 2014, 4 years after creation of the Marine Protected Area, to determine its possible influence on holothurians. 3 - Comparison with data from the same locations in 2006 and 2010, using the same methodologies, showed significant overall population decline at Diego Garcia, recovery at Salomon (significant) and Peros Banhos (not significant), and no significant change on the Great Chagos Bank. 4 - The median abundance of Holothuria atra and Bohadschia sp(p.) decreased at Diego Garcia, while that of Stichopus chloronotus increased at Diego Garcia and Salomon atolls. Changes for other species were less marked. 5 - Diego Garcia, Salomon and Peros Bahnos showed a decline in diversity (no. of holothurian taxa and/or Shannon index, H), but diversity has been relatively stable on the Great Chagos Bank. 6 - All atolls, except Diego Garcia, are uninhabited and illegal fishing of holothurians, principally by Sri Lankan fishers, appears to have eased since 2005/2006, based on evaluation of 299 patrol survey reports. This may have led to the recovery or stabilization of populations in the outer atolls of Salomon, Peros Banhos atolls and the Great Chagos Bank. 7 - The reasons for holothurian decline at Diego Garcia, where exploitation is also prohibited (but cannot be ruled out), are unclear. Population patterns on all islands may reflect both natural fluctuations and disturbance events, including changing exploitation pressure. 8 - Conservation requirements include periodic re-censusing of holothurians and ongoing monitoring of illegal fishing to help safeguard populations and the integrity of the Marine Protected Area.
Jérôme OLLIER

Influence of Local Pressures on Maldivian Coral Reef Resilience Following Repeated Blea... - 0 views

  •  
    Two severe heat waves triggered coral bleaching and mass mortality in the Maldives in 1998 and 2016. Analysis of live coral cover data from 1997 to 2019 in shallow (5 m depth) reefs of the Maldives showed that the 1998 heat wave caused more than 90% of coral mortality leaving only 6.8 ± 0.3% of survived corals in all the shallow reefs investigated. No significant difference in coral mortality was observed among atolls with different levels of human pressure. Maldivian reefs needed 16 years to recover to the pre-bleaching hard coral cover values. The 2016 heat wave affected all reefs investigated, but reefs in atolls with higher human pressure showed greater coral mortality than reefs in atolls with lower human pressure. Additionally, exposed (ocean) reefs showed lower coral mortality than those in sheltered (lagoon) reefs. The reduced coral mortality in 2016 as compared to 1998 may provide some support to the Adaptive Bleaching Hypothesis (ABH) in shallow Maldivian reefs, but intensity and duration of the two heat waves were different. Analysis of coral cover data collected along depth profiles on the ocean sides of atolls, from 10 to 50 m, allowed the comparison of coral mortality at different depths to discuss the Deep Refuge Hypothesis (DRH). In the upper mesophotic zone (i.e., between 30 and 50 m), coral mortality after bleaching was negligible. However, live coral cover did not exceed 15%, a value lower than coral survival in shallow reefs. Low cover values of corals surviving in the mesophotic reefs suggest that their role as refuge or seed banks for the future recovery of some species in shallow-water reefs of the Maldives may be small. The repeatedly high coral mortality after bleaching events and the long recovery period, especially in sites with human pressure, suggest that the foreseen increased frequency of bleaching events would jeopardize the future of Maldivian reefs, and ask for reducing local pressures to improve their resilience.
Jérôme OLLIER

Regional Movements of Reef Manta Rays (Mobula alfredi) in Seychelles Waters - @FrontMar... - 0 views

  •  
    The decline in numbers of reef manta rays (Mobula alfredi) throughout their range has highlighted the need for improved information on their spatial ecology in order to design effective conservation strategies for vulnerable populations. To understand their patterns of movement in Seychelles, we used three techniques-archival pop-up satellite tags, acoustic tags, and photo-identification-and focussed on the aggregation at D'Arros Island and St. Joseph Atoll within the Amirantes Group. M. alfredi were photographed within six of the seven Island Groups of Seychelles, with 64% of individuals being resighted at least once between July 2006 and December 2019 over timeframes of 1-3,462 days (9.5 years; median = 1,018 days). Only three individuals from D'Arros Island were resighted at a second aggregation site located more than 200 km away at St. François Atoll during photo-identification surveys. Satellite-tracked M. alfredi (n = 5 tracks; maximum 180 days) remained within the boundary of the Seychelles Exclusive Economic Zone, where they spent the majority of their time (87%) in the upper 50 m of the water column in close proximity to the Amirantes Bank. The inclusion of acoustic tagging data in the models of estimated satellite-track paths significantly reduced the errors associated with the geolocation positions derived from archived light level data. The insights gained into the patterns of horizontal and vertical movements of M. alfredi using this multi-technique approach highlight the significance of D'Arros Island and St. Joseph Atoll, and the wider Amirantes Group, to M. alfredi in Seychelles, and will benefit future conservation efforts for this species within Seychelles and the broader Western Indian Ocean.
Jérôme OLLIER

Many Low-Lying Atoll Islands Will Be Uninhabitable by Mid-21st Century - @USGS - 0 views

  •  
    Sea-level rise and wave-driven flooding will negatively impact freshwater resources on many low-lying atoll islands in such a way that many could be uninhabitable in just a few decades.
Jérôme OLLIER

Via @WhySharksMatter - Long-term changes in adult size of green turtles at Aldabra Atol... - 0 views

  •  
    Around the world, declines in the mean size of nesting sea turtles have been reported with concerns of a concomitant decrease in the reproductive output of populations. Here, we explore this possibility using long-term observations of green turtles (Chelonia mydas) at Aldabra Atoll, Seychelles. Based on > 4500 individual measurements over 21 years (1996-2016), we found the curved carapace length of nesting females declined by about 0.64 cm per decade, from 111.43 to 110.08 cm. For 391 individuals that were measured more than once with measurement interval of 2.8-19 years apart, the mean growth rate was 0.14 cm year−1. Comparisons between the size of adult females and males were based on 23 and 14 weight measurements, 107 and 33 carapace length measurements and 103 and 33 carapace width measurements, respectively, taken during 1981-1983. Adult females were larger than males, with the sexual dimorphism index, i.e. the ratio of size of the larger sex to the smaller, being 1.09 and 1.10 for carapace length and width, respectively, and 1.25 for weight. Smaller females tended to lay fewer eggs per clutch but the decrease in female mean size was accompanied by increases in numbers of turtles nesting annually, such that the estimated total numbers of eggs per year increased from 1.3 million to 2.0 million between 1996 and 2016. Therefore, a decrease in mean size of nesting females has not compromised egg production for this population.
Jérôme OLLIER

Sublethal Injuries and Physical Abnormalities in Maldives Manta Rays, Mobula alfredi an... - 0 views

  •  
    Manta ray populations worldwide are vulnerable to sublethal injuries resulting from human activities, e.g., entanglement in fishing line and boat strikes, which have the potential to impact an individual's health, fitness, and behaviour. Sublethal injuries and physical abnormalities also occur naturally from predation events, deformity, parasites, and disease. To determine the type and frequency of anthropogenic and natural originated injury events affecting Mobula alfredi and M. birostris in the Maldives, we examined data from the Manta Trust's Maldivian Manta Ray Project (MMRP) database, which contains 73,638 photo-identification (photo-ID) sightings of the two manta ray species from 1987 to 2019. The likely origin of each injury or physical abnormality was determined based on visual assessment of the photo-ID images. Multiple injuries to an individual originating from the same event were grouped for analysis. Generalised linear mixed models (GLMM) were used to investigate the relationship between the occurrence of injury events and the explanatory variables sex and maturity status for both species, with the additional variable site function (cleaning, feeding, cruising) investigated for M. alfredi. Spatial and temporal variations in M. alfredi injury events, and their origin and type, were investigated by calculating the percentage of injury events per sighted individual at each Maldivian atoll, and per re-sighted individual in each year from 2005 to 2019. For both species, injury events were predominantly of natural origin, with predatory bites being the most frequent type. The most common anthropogenic injury type was entanglement in fishing line. Injuries to M. alfredi were significantly more likely to be observed on juveniles than adults, males than females, and at cleaning stations as opposed to feeding or cruising sites. Neither sex nor maturity status were significant explanatory variables for the occurrence of injuries to M. birostris. Highest percentages
Jérôme OLLIER

Via @WhySharksMatter - Growth rate and projected age at sexual maturity for immature ha... - 0 views

  •  
    Changes in marine ecosystems from human stressors, and concerns over how species will respond to these changes have emphasized the importance of understanding and monitoring crucial demographic parameters for population models. Long-lived, migratory, marine vertebrates such as sea turtles are particularly vulnerable to changes. Life-history parameters like growth-in-body size can be largely influenced by environmental processes which can impact population growth. We analyzed a 40-year (1981-2021) capture-mark-recapture dataset from the protected UNESCO World Heritage Site, Aldabra Atoll, Seychelles, to estimate key population parameters, including body growth, for immature green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata). Curved carapace length (CCL) range was 34.3-110.9 cm (mean ± SD: 51.0 ± 11.4 cm, n = 1191) for green turtles and 28.7-89.4 cm (47.7 ± 14.4 cm, n = 538) for hawksbill turtles. Recapture events, with an 11-month minimum period, revealed a mean annual growth rate of 3.2 ± 1.5 cm year−1 for green turtles (n = 75) and 2.8 ± 1.4 cm year−1 for hawksbill turtles (n = 110). Hawksbill turtles exhibited a non-monotonic growth rate while no significant growth-size relationship was detected for green turtles. Green turtle mean annual growth per 10-cm size class was highest in the larger size classes (50‒69.9 cm). Hawksbill turtle growth rate was highest in the larger size classes (50‒69.9 cm) then declined in the largest size class (70‒79.9 cm). Green turtles and hawksbill turtles may spend > 8 and 18 years, respectively, using Aldabra, Seychelles, as a foraging ground.
Jérôme OLLIER

Future sea level rises should not restrict new island formation in the Maldives - Unive... - 0 views

  •  
    The continued accumulation of sand within the iconic ring-shaped reefs inside Maldivian atolls could provide a foundation for future island development new research suggests. Islands like the Maldives are considered likely to be the first to feel the effects of climate change induced sea level rise, with future island growth essential to counter the threat of rising sea levels.
Jérôme OLLIER

A Shipwreck's Incalculable Toll on a Remote Reef - @hakaimpagazine - 0 views

  •  
    After a fishing boat ran aground on a fragile atoll, the consequences for the ecosystem were alarming-and curious.
Jérôme OLLIER

Is climate change disrupting maritime boundaries - @Sydney_Uni - 0 views

  •  
    Rising sea levels, coupled with the natural variability of atoll islands and coral reefs, is creating new uncertainty in international law, with geopolitical implications.
Jérôme OLLIER

Coral reef island shoreline change and the dynamic response of the freshwater lens, Huv... - 0 views

  •  
    Low-lying coral reef islands have been projected to become uninhabitable by the end of the century due to sea level rise, but such projections of vulnerability assume that reef islands are static landforms that flood incrementally with sea level rise. In fact, GIS-based reef island shoreline analyses have demonstrated that reef islands are highly dynamic landforms that may adjust their shorelines in response to changing environmental conditions. However, the vast majority of reef island shoreline analyses have been undertaken in the Pacific Ocean, leaving our understanding of changes in the Indian Ocean more limited. Further, our knowledge of how island dynamics can impact groundwater resources is restricted due to the assumption that islands will exhibit purely erosional responses to sea level rise. Here, we analyse shoreline evolution on 49 reef islands over a 50-year timeframe in Huvadhoo Atoll, Maldives. Additionally, rates of shoreline change were used to undertake numerical modelling of shifts in freshwater lens volume in 2030, 2050 and 2100 in response to changes in recharge. Despite sea level rising at 4.24 mm/year (1969-2019), accretion was prevalent on 53% of islands, with the remaining islands eroding (25%) or remaining stable (22%). Average net shoreline movement was 4.13 m, ranging from -17.51 to 65.73 m; and the average rate of shoreline change (weighted linear regression) was 0.13 m/year, ranging from -0.07 to 2.65 m/year. The magnitudes and rates of reef island evolution were found to be highly site-specific, with island type found to be the only significant predictor of either net shoreline movement or weighted linear regression. Results suggest that freshwater lens volume was substantially impacted by shoreline change compared to changes in recharge whereby accretion and erosion led to large increases (up to 65.05%) decreases (up to -50.4%) in les volume, respectively. We suggest that the capacity of reef islands to both (1) adjust their shorelines
Jérôme OLLIER

Off the Seychelles, a dive into a never-seen landscape - @AP - 0 views

  •  
    Off the Seychelles, a dive into a never-seen landscape.
Jérôme OLLIER

Coastal Landform Constrains Dispersal in Mangroves - @FrontMarineSci - 0 views

  •  
    Mangrove forests are dynamic ecosystems found along low-lying coastal plains along tropical, subtropical, and some warm-temperate coasts, predominantly on tidal flats fringing deltas, estuaries, bays, and oceanic atolls. These landforms present varied hydrodynamic and geomorphological settings for mangroves to persist and could influence the extent of within-site propagule transport and subsequent local regeneration. In this study, we examined how different landform characteristics may influence local genetic diversity, kinship, and neighborhood structure of mangrove populations. To do so, we considered independent populations of Avicennia marina, one of the most abundant and widespread mangrove species, located in estuarine and coastal bay environments spread across the Western Indian Ocean region. A transect approach was considered to estimate kinship-based fine-scale spatial genetic structure using 15 polymorphic microsatellite markers in 475 adult A. marina trees from 14 populations. Elevated kinship values and significant fine-scale structure up to 30, 60, or 90 m distances were detected in sheltered systems void of river discharge, suggesting a setting suitable for very local propagule retention and establishment within a neighborhood. Slopes of a linear regression over restricted distance within 150 m were significantly declining in each sheltered transect. Contrastingly, such a spatial structure has not been detected for A. marina transects bordering rivers in the estuarine systems considered, or alongside partially sheltered creeks, suggesting that recruitment here is governed by unrelated carried-away mixed-origin propagules. South African populations showed strong inbreeding levels. In general, we have shown that A. marina populations can locally experience different modes of propagule movement, explained from their position in different coastal landforms. Thus, the resilience of mangroves through natural regeneration is achieved by different responses in
Jérôme OLLIER

Monsoon Influence on the Island Mass Effect Around the Maldives and Sri Lanka - @FrontM... - 0 views

  •  
    The monsoon circulation in the Northern Indian Ocean (NIO) is unique since it develops in response to the bi-annual reversing monsoonal winds, with the ocean currents mirroring this change through directionality and intensity. The interaction between the reversing currents and topographic features have implications for the development of the Island Mass Effect (IME) in the NIO. The IME in the NIO is characterized by areas of high chlorophyll concentrations identified through remote sensing to be located around the Maldives and Sri Lanka in the NIO. The IME around the Maldives was observed to reverse between the monsoons to downstream of the incoming monsoonal current whilst a recirculation feature known as the Sri Lanka Dome (SLD) developed off the east coast of Sri Lanka during the Southwest Monsoon (SWM). To understand the physical mechanisms underlying this monsoonal variability of the IME, a numerical model based on the Regional Ocean Modeling System (ROMS) was implemented and validated. The model was able to simulate the regional circulation and was used to investigate the three-dimensional structure of the IME around the Maldives and Sri Lanka in terms of its temperature and velocity. Results revealed that downwelling processes were prevalent along the Maldives for both monsoon periods but was applicable only to latitudes above 4°N since that was the extent of the monsoon current influence. For the Maldives, atolls located south of 4°N, were influenced by the equatorial currents. Around Sri Lanka, upwelling processes were responsible for the IME during the SWM but with strong downwelling during the NEM. In addition, there were also regional differences in intra-seasonal variability for these processes. Overall, the strength of the IME processes was closely tied to the monsoon current intensity and was found to reach its peak when the monsoon currents were at the maximum.
Jérôme OLLIER

Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at ... - 0 views

  •  
    Introduction: Coral bleaching immediately impacts the reef benthos, but effects on fish communities are less well understood because they are often delayed and confounded by anthropogenic interactions.
Jérôme OLLIER

Maldives: In a Troubled Paradise, Time Runs Out on Environmental Deadline - TIME.com - 0 views

  •  
    Maldives: In a Troubled Paradise, Time Runs Out on Environmental Deadline.
1 - 20 of 27 Next ›
Showing 20 items per page