Each year, an increasing number of traditional fishers from southwestern Madagascar sail away from their villages, seeking ever-dwindling fish stocks far from home.
A small, motorised fishing boat heads out to sea from the port of Sinabang, leaving behind the remote island of Simeulue, off the coast of western Sumatra. Noticeable on the deck is a tangle of plastic tubes, linked up to a roaring, spluttering engine. The on-board fishers are going 'compressor fishing', a practice that involves divers searching the seabed for lucrative octopus, grouper and sea cucumber, all the while relying on air supplied by a single plastic lifeline, snaking precariously up to the surface. The rewards can be great - fishers are able to stay deep underwater for long periods, harvesting catches that would be inaccessible to those using other fishing techniques. However, this method is fraught with dangers, as local Simeulue fisher, Anhar, can testify.
The silver-lipped pearl oyster, Pinctada maxima, is the primary species used for the culture of pearls in the Indo-Pacific region. The Western Australian fishery relies on wild-caught animals, and as such, knowledge of the status and distribution of P. maxima underpins sustainable management of the fishery. Eighty Mile Beach, in tropical Western Australia, is the key harvest area for P. maxima, with oysters collected by divers to depths of ∼35 m, although there are anecdotal accounts of oysters beyond diving depths. Image-based, and acoustic methods were used to elucidate distribution patterns of P. maxima off Eighty Mile Beach, including data from 862 km2 of multibeam survey and 119 towed video transects spanning an area from the 20 to 100 m contour lines. We quantified habitat characters including depth, substrate, and benthic community composition associated with pearl oyster distribution. Multibeam sonar data was also coupled with towed video data to produce predictive statistical models of P. maxima habitat. We found P. maxima to depths of 76 m, although more than 90% of individuals occurred shallower than 40 m and less than 2% were found deeper than 50 m. Oysters occupied flat, sandy habitats with neighbouring benthic communities of filter feeders (>98% of observations). These results show P. maxima predominantly occurs in depths <40 m, with no evidence that extensive populations extend into deep water in the region.
The microbial communities of the hydrothermal Scaly-foot Snails (SFSs) from independent hydrothermal vent fields have not been investigated in depth. In this study, we collected SFSs from two different hydrothermal environments located on the Central Indian Ridge (CIR) and the Southwest Indian Ridge (SWIR), the Kairei and Longqi vent fields, respectively. Additionally, one SFS collected from the Kairei vent field was reared for 16 days with in situ deep-sea seawater. The epibiotic and internal samples of SFSs, including ctenidium, esophageal gland, visceral mass, shells, and scales, were examined for microbial community compositions based on the 16S rRNA gene. Our results revealed significant differences in microbial community composition between SFSs samples collected from Kairei and Longqi vent fields. Moreover, the microbial communities of epibiotic and internal SFS samples also exhibited significant differences. Epibiotic SFS samples were dominated by the bacterial lineages of Sulfurovaceae, Desulfobulbaceae, Flavobacteriaceae, and Campylobacteraceae. While in the internal SFS samples, the genus Candidatus Thiobios, affiliated with the Chromatiaceae, was the most dominant bacterial lineage. Furthermore, the core microbial communities of all samples, which accounted for 78 ∼ 92% of sequences, were dominated by Chromatiaceae (27 ∼ 49%), Sulfurovaceae (10 ∼ 35%), Desulfobulbaceae (2 ∼ 7%), and Flavobacteriaceae (3 ∼ 7%) at the family level. Based on the results of random forest analysis, we also found the genera Desulfobulbus and Sulfurovum were the primary bacterial lineages responsible for the dissimilarity of microbial communities between the SFS samples collected from the Kairei and Longqi vent fields. Our results indicated that the microbial lineages involved in the sulfur cycle were the key microorganisms, playing a crucial role in the hydrothermal vent ecosystems. Our findings expand current knowledge on microbial diversity and composition in the e
Giant clams are marine bivalves that inhabit Indo-Pacific coral reefs. The boring giant clam, Tridacna crocea, exhibits bright and conspicuous mantle coloration based on the specialized cells (iridocytes) that generate structural colors. In order to illustrate the coloring mechanism of individual iridocytes, the reflection spectra curve of iridocytes was obtained by a micro-hyperspectral imager. TEM images were obtained to show the inner nanostructures of iridocytes. FDTD simulation was conducted to analyze the relationship between the color of iridocytes and the unique lamellar structure. We found that the laminae in the regular arrangement within cells govern the coloration of individual iridocytes. With the gradual increase of lamellar thickness and spacing, the color of the structure varies from bright violet to orange-red, forming a full visible spectrum. This study provides a new understanding of the various colors produced by individual iridocytes.
TMT has been monitoring the high seas squid fishery taking place in the northwest Indian Ocean since 2017. The fishery is currently unregulated and has seen significant expansion year on year.
As a bio]diversity hotspot, the East Indies (Coral) Triangle possesses the highest biodiversity on the earth. However, evolutionary hypotheses around this area remain controversial; e.g., center of origin, center of accumulation, and center of overlap have been supported by different species. This study aims to answer the evolutionary influence of the Indonesian Seaway on the biodiversity of the Coral Triangle by recovering the evolutionary origins of a wide-ranging ommastrephid squid (Sthenoteuthis oualaniensis) based on integrated molecular and oceanographic clues from the Indo-Pacific. Three new clades were revealed; viz., clade I from the South China Sea, clade II from the northern East Indian Ocean, and clade III from the southern East Indian Ocean. These two Indian Ocean clades formed a monophyly closely related to clade IV from the Central-Southeast Pacific. Clade VI from the central Equatorial Pacific and clade V from the northern Eastern Pacific sit in basal positions of phylogenetic trees. Ancestral Sthenoteuthis was inferred to have originated from the Atlantic Ocean and sequentially dispersed to the northern East Pacific, central Equatorial Pacific, and West Pacific through the open Panama Seaway and being transported by westward North Equatorial Current. The East Indian Ocean was likely colonized by an ancestral population of clade IV from the Southeast Pacific. Westward South Equatorial Circulation could have promoted transoceanic migration of S. oualaniensis through the wide paleo-Indonesian Seaway. Sea level regression since the Miocene and the closure of the Indonesian Seaway at 4-3 Ma were responsible for the population genetic differentiation of S. oualaniensis in the Indo-Pacific. Therefore, the Indonesian Gateway played an important role in influencing marine organisms' migration and population differentiation through controlling and reorganizing circulations in the Indo-Pacific.
The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.
CURTIN University researchers believe rising sea temperatures are to blame for the plummeting number of invertebrates such as molluscs and sea urchins at Rottnest Island off Western Australia, with some species having declined by up to 90 per cent between 2007 and 2021.
The radula is the main feeding organ and also very significant to the majority of the mollusks (especially gastropod) taxonomy. With shell morphology, radular morphology is the key characteristic for the identification of gastropod species. The shape and structure of the radular teeth are unique from family to species level. In this study, five basic types of radula (i.e., docoglossan, rhipidoglossan, taenioglossan, stenoglossan, and toxoglossan), which were observed from a total of 23 different species belonging to 12 families, were examined. Collection of the voucher intertidal gastropod specimen for the study had initiated during May-October 2019 in the rocky intertidal area near Veraval of the south Saurashtra coastline. Direct handpicking methods were used for the collection of the specimen for experiments.
A large-scale shellfish reef has been constructed in the Swan River, with research from Murdoch scientists demonstrating the tremendous capacity of these aquatic vacuums to improve water quality.