Skip to main content

Home/ About The Indian Ocean/ Group items tagged estimation

Rss Feed Group items tagged

Jérôme OLLIER

Estimating thermohaline structures in the tropical Indian Ocean from surface parameters... - 0 views

  •  
    Accurately estimating the ocean's subsurface thermohaline structure is essential for advancing our understanding of regional and global ocean dynamics. In this study, we propose a novel neural network model based on Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) to simultaneously estimate the ocean subsurface thermal structure (OSTS) and ocean subsurface salinity structure (OSSS) in the tropical Indian Ocean using satellite observations. The input variables include sea surface temperature (SST), sea surface salinity (SSS), sea surface height anomaly (SSHA), eastward component of sea surface wind (ESSW), northward component of sea surface wind (NSSW), longitude (LON), and latitude (LAT). We train and validate the model using Argo data, and compare its accuracy with that of the original Convolutional Neural Network (CNN) model using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R²). Our results show that the CBAM-CNN model outperforms the CNN model, exhibiting superior performance in estimating thermohaline structures in the tropical Indian Ocean. Furthermore, we evaluate the model's accuracy by comparing its estimated OSTS and OSSS at different depths with Argo-derived data, demonstrating that the model effectively captures most observed features using sea surface data. Additionally, the CBAM-CNN model demonstrates good seasonal applicability for OSTS and OSSS estimation. Our study highlights the benefits of using CBAM-CNN for estimating thermohaline structure and offers an efficient and effective method for estimating thermohaline structure in the tropical Indian Ocean.
Jérôme OLLIER

Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and S... - 0 views

  •  
    Chlorophyll-a can be used as a proxy for phytoplankton and thus is an essential water quality parameter. The presence of phytoplankton in the ocean causes selective absorption of light by chlorophyll-a pigment resulting in change of the ocean color that can be identified by ocean color remote sensing. The accuracy of chlorophyll-a concentration (Chl-a) estimated from remote sensing sensors depends on the bio-optical algorithm used for the retrieval in specific regional waters. In this work, it is attempted to estimate Chl-a from two currently active satellite sensors with relatively good spatial resolutions considering ocean applications. Suitability of two standard bio-optical Ocean Color (OC) Chlorophyll algorithms, OC-2 (2-band) and OC-3 (3-band) in estimating Chl-a for turbid waters of the northern coastal Bay of Bengal is assessed. Validation with in-situ data showed that OC-2 algorithm gives an estimate of Chl-a with a better correlation of 0.795 and least bias of 0.35 mg/m3. Further, inter-comparison of Chl-a retrieved from the two sensors, Landsat-8 OLI and Sentinel-2 MSI was also carried out. The variability of Chl-a during winter, pre-monsoon, and post-monsoon seasons over the study region were inter-compared. It is observed that during pre-monsoon and post-monsoon seasons, Chl-a from MSI is over estimated compared to OLI. This work is a preliminary step toward estimation of Chl-a in the coastal oceans utilizing available better spatially resolved sensors.
Jérôme OLLIER

Via @WhySharksMatter - Approaches for estimating natural mortality in tuna stock assess... - 0 views

  •  
    The values used for natural mortality (M) are very influential in stock assessment models, affecting model outcomes and management advice. Natural mortality is one of the most difficult demographic parameters to estimate, and there is often limited information about the true levels. Here, we summarise the evidence used to estimate natural mortality at age for the four main stocks of yellowfin tuna (Indian, Western and Central Pacific, Eastern Pacific, and Atlantic Oceans), including catch curves, tagging experiments, and maximum observed age. We identify important issues for estimating M such as variation with age linked to size, maturity state or senescence, and highlight information gaps. We describe the history of natural mortality values used in stock assessments by the tuna Regional Fisheries Management Organisations responsible for managing each stock and assess the evidence supporting these values. In June 2021, an online meeting was held by the Center for the Advancement of Population Assessment Methodology (CAPAM), to provide advice and guidance on practices for modelling natural mortality in fishery assessments. Based on approaches presented and discussed at the meeting, we develop a range of yellowfin tuna natural mortality estimates for each stock. We also recommend future research to improve these estimates of natural mortality.
Jérôme OLLIER

INCOIS air-sea Flux Reference System onboard ORV Sagar Nidhi: overview and initial resu... - 0 views

  •  
    Accurate estimation of air-sea fluxes is essential for advancing ocean modeling, observational studies, and understanding air-sea interactions. To address this need, the Indian National Centre for Ocean Information Services (INCOIS) developed and deployed a Flux Reference System (INCOIS-FRS) onboard ORV Sagar Nidhi. This article provides an overview of the system, its components, data acquisition methods, flux computation techniques, and preliminary results. The INCOIS-FRS integrates an Eddy Covariance Flux System (ECFS) and an Automated Weather Station (AWS). The ECFS collects high-frequency (20 Hz) data to directly estimate the latent heat flux (LHF), sensible heat flux (SHF), and momentum flux (τ) using the Eddy Covariance (EC) method. The AWS records meteorological and oceanic variables at 1 Hz, enabling flux estimates using the COARE 3.5 algorithm. A spectrally flat Class-A pyranometer and a pyrgeometer provide climate-grade measurements of downward shortwave and longwave radiation, which, combined with EC-derived SHF and LHF, yield the net heat flux. This article presents preliminary results inferred from data collected by INCOIS-FRS during a cruise in the Arabian Sea from 1-16 July 2023. Data from this system are useful for validating model outputs and satellite observations, refining flux parameterizations, marine boundary layer studies, and improving air-sea interaction models. INCOIS-FRS represents a first step toward equipping more oceanographic platforms, both crewed and uncrewed, with flux reference units. Future plans include expanding such deployments to enhance observational coverage and support research on air-sea fluxes across the Indian Ocean and other regions.
Jérôme OLLIER

Via @SeaSaver - Endangered green turtle numbers only half of official estimates - @IBTi... - 0 views

  •  
    Endangered green turtle numbers only half of official estimates.
Jérôme OLLIER

Evaluating the stock status of 10 croaker species landed along the north-eastern Arabia... - 0 views

  •  
    India accounts for nearly 60% of the croakers caught in the Indian Ocean. The north-west (NW) coast of India is the most productive fishing ground for croakers and contributes almost half of the nation's croaker catch. Lesser sciaenids (small- and medium-sized croakers) are the multi-species complex landed by commercial trawlers along the NW coast of India. Despite several notable changes in the fishing pattern in the region, such as the emergence of multi-day fishing and increasing dominance of pelagic trawling, there is no recent assessment of this major demersal fishery group. The present study evaluates the stock status of 10 species of lesser sciaenids forming the commercial fishery in the region using length frequency data collected during 2020-2021. The assessment was made using the length-based Bayesian biomass (LBB) estimation method. The indicators of relative biomass (B/B0 and B/BMSY) showed that most of the species (seven) are fully exploited, whereas two and one species were found under- and over-exploited, respectively. Excessive juveniles (Lmean/Lopt and Lc/Lc_opt< 0.90) in catches were observed in the case of Paranibea semiluctuosa. A sufficient number of larger individuals (L95th/Linf< 0.90) in the population were lacking in the case of Johnius belangerii and Otoithes ruber. However, the study indicated a gradual improvement in stock status for most of the species over previous estimates, which can be attributed to the diversion of trawl fishing efforts towards the pelagic realm.
Jérôme OLLIER

Reconstruction of dissolved oxygen in the Indian Ocean from 1980 to 2019 based on machi... - 0 views

  •  
    Oceanic dissolved oxygen (DO) decline in the Indian Ocean has profound implications for Earth's climate and human habitation in Eurasia and Africa. Owing to sparse observations, there is little research on DO variations, regional comparisons, and its relationship with marine environmental changes in the entire Indian Ocean. In this study, we applied different machine learning algorithms to fit regression models between measured DO, ocean reanalysis physical variables, and spatiotemporal variables. We utilized the Extremely Randomized Trees (ERT) model with the best performance, inputting complete reanalysis data and spatiotemporal information to reconstruct a four-dimensional DO dataset of the Indian Ocean during 1980-2019. The evaluation results showed that the ERT-based DO dataset was superior to the DO simulations in Earth System Models across different time and space. Furthermore, we assessed the spatiotemporal variations in reconstructed DO dataset. DO decline and oxygen-minimum zone (OMZ) expansion were prominent in the Arabian Sea, Bay of Bengal, and Equatorial Indian Ocean. Through correlation analysis, we found that temperature and salinity changes related to solubility primarily control the oxygen decrease in the middle and deep sea. However, the complicated factors with solubility change, vertical mixing, and circulation govern the oxygen increase in the upper and middle sea. Finally, we conducted a volume integral to estimate the oxygen content in the Indian Ocean. Overall, a deoxygenation trend of −141.5 ± 15.1 Tmol dec−1 was estimated over four decades, with a slowdown trend of −68.9 ± 31.3 Tmol dec−1 after 2000. Under global warming and climate change, OMZ expanding and deoxygenation in the Indian Ocean are gradually mitigating. This study enhances our understanding of DO dynamics of the Indian Ocean in response to deoxygenation.
Jérôme OLLIER

Seagrass Meadows Reduce Wind-Wave Driven Sediment Resuspension in a Sheltered Environme... - 0 views

  •  
    Seagrass meadows are prominent in many coastal zones worldwide and significant contributors to global primary production. The large bottom roughness (or canopy) created by seagrass meadows substantially alters near-bed hydrodynamics and sediment transport. In this study, we investigate how a seagrass meadow in a low-energy environment (forced by local winds) modifies near-bed mean and wave-driven flows and assess how this relates to suspended sediment concentration (SSC). A two-week field study was conducted at Garden Island in southwestern Australia, a shallow and sheltered coastal region subjected to large diurnal sea-breeze cycles, typical of many low-energy environments where seagrasses are found. The mean and turbulent flow structure, along with optical estimates of SSC, were measured within both a seagrass canopy and over an adjacent bare bed. Near-bed mean current velocities within the seagrass canopy were on average 35% of the velocity above the canopy. Oscillatory wave velocities were less attenuated than mean current velocities, with near-bed values on average being 83% of those above the canopy. Mean and maximum shear velocities inferred from currents and waves above the canopy frequently exceeded the threshold for sediment resuspension, but no significant variation was observed in the SSC. However, a significant correlation was observed between SSC and bed shear stress estimated using near-bed velocities inside the canopy. When sediment was resuspended, there were substantial differences between the SSCs within and above the canopy layer, with higher levels confined within the canopy. This study demonstrates the importance of measuring near-bed hydrodynamic processes directly within seagrass canopies for predicting the role seagrass meadows play in regulating local rates of sediment resuspension.
Jérôme OLLIER

When Imagery and Physical Sampling Work Together: Toward an Integrative Methodology of ... - 0 views

  •  
    Imagery has become a key tool for assessing deep-sea megafaunal biodiversity, historically based on physical sampling using fishing gears. Image datasets provide quantitative and repeatable estimates, small-scale spatial patterns and habitat descriptions. However, taxon identification from images is challenging and often relies on morphotypes without considering a taxonomic framework. Taxon identification is particularly challenging in regions where the fauna is poorly known and/or highly diverse. Furthermore, the efficiency of imagery and physical sampling may vary among habitat types. Here, we compared biodiversity metrics (alpha and gamma diversity, composition) based on physical sampling (dredging and trawling) and towed-camera still images (1) along the upper continental slope of Papua New Guinea (sedimented slope with wood-falls, a canyon and cold seeps), and (2) on the outer slopes of the volcanic islands of Mayotte, dominated by hard bottoms. The comparison was done on selected taxa (Pisces, Crustacea, Echinoidea, and Asteroidea), which are good candidates for identification from images. Taxonomic identification ranks obtained for the images varied among these taxa (e.g., family/order for fishes, genus for echinoderms). At these ranks, imagery provided a higher taxonomic richness for hard-bottom and complex habitats, partially explained by the poor performance of trawling on these rough substrates. For the same reason, the gamma diversity of Pisces and Crustacea was also higher from images, but no difference was observed for echinoderms. On soft bottoms, physical sampling provided higher alpha and gamma diversity for fishes and crustaceans, but these differences tended to decrease for crustaceans identified to the species/morphospecies level from images. Physical sampling and imagery were selective against some taxa (e.g., according to size or behavior), therefore providing different facets of biodiversity. In addition, specimens collected at a larger scale
Jérôme OLLIER

Spatiotemporal distributions of air-sea CO2 flux modulated by windseas in the Southern ... - 0 views

  •  
    The Southern Indian Ocean is a major reservoir for rapid carbon exchange with the atmosphere, plays a key role in the world's carbon cycle. To understand the importance of anthropogenic CO2 uptake in the Southern Indian Ocean, a variety of methods have been used to quantify the magnitude of the CO2 flux between air and sea. The basic approach is based on the bulk formula-the air-sea CO2 flux is commonly calculated by the difference in the CO2 partial pressure between the ocean and the atmosphere, the gas transfer velocity, the surface wind speed, and the CO2 solubility in seawater. However, relying solely on wind speed to measure the gas transfer velocity at the sea surface increases the uncertainty of CO2 flux estimation. Recent studies have shown that the generation and breaking of ocean waves also significantly affect the gas transfer process at the air-sea interface. In this study, we highlight the impact of windseas on the process of air-sea CO2 exchange and address its important role in CO2 uptake in the Southern Indian Ocean. We run the WAVEWATCH III model to simulate surface waves in this region over the period from January 1st 2002 to December 31st 2021. Then, we use the spectral partitioning method to isolate windseas and swells from total wave fields. Finally, we calculate the CO2 flux based on the new semiempirical equation for gas transfer velocity considering only windseas. We found that after considering windseas' impact, the seasonal mean zonal flux (mmol/m2·d) increased approximately 10%-20% compared with that calculated solely on wind speed in all seasons. Evolution of air-sea net carbon flux (PgC) increased around 5.87%-32.12% in the latest 5 years with the most significant seasonal improvement appeared in summer. Long-term trend analysis also indicated that the CO2 absorption capacity of the whole Southern Indian Ocean gradually increased during the past 20 years. These findings extend the understanding of the roles of the Southern Indian Ocea
konnectrajasthan

People offers online insurance quotes for Auto insurance - 0 views

  •  
    A quote is an estimate of a premium for the insurance coverage you selected and information you entered. A quote is not an offer for insurance or an insurance contract. People offers online insurance quotes for Auto insurance, Home insurance, Renter's insurance, Condo insurance and Term Life insurance.
Jérôme OLLIER

Cargo ship BBS Sky collided with ULCS Hong Kong Express in North Sea - @MarNewsjournal - 0 views

  •  
    The ultra large container ship Hong Kong Express collided with general cargo ship BBS Sky on 10 nautical miles off Hollum, Netherlands. The both ships were heading in northern direction and accident happened during overtaking. The container carrier suffered no damages, while the German general cargo ship BBS Sky got small scratch above the waterline, but remained seaworthy and continue her voyage. The local authorities were informed about the duty officers of both ships about the collision, but after it was estimated the damages are minor, vessels were released to resume voyages and will be inspected in the next port of call.
Jérôme OLLIER

New evidence of megafaunal bone damage indicates late colonization of Madagascar - @PLO... - 0 views

  •  
    The estimated period in which human colonization of Madagascar began has expanded recently to 5000-1000 y B.P., six times its range in 1990, prompting revised thinking about early migration sources, routes, maritime capability and environmental changes. Cited evidence of colonization age includes anthropogenic palaeoecological data 2500-2000 y B.P., megafaunal butchery marks 4200-1900 y B.P. and OSL dating to 4400 y B.P. of the Lakaton'i Anja occupation site. Using large samples of newly-excavated bone from sites in which megafaunal butchery was earlier dated >2000 y B.P. we find no butchery marks until ~1200 y B.P., with associated sedimentary and palynological data of initial human impact about the same time. Close analysis of the Lakaton'i Anja chronology suggests the site dates <1500 y B.P. Diverse evidence from bone damage, palaeoecology, genomic and linguistic history, archaeology, introduced biota and seafaring capability indicate initial human colonization of Madagascar 1350-1100 y B.P.
Jérôme OLLIER

Sharks more vulnerable than originally thought - @UniofNewcastle - 0 views

  •  
    Total number of sharks and rays caught annually by small-scale fisheries in the South West Indian Ocean is estimated to be 2.5 million individuals - 73% more than officially reported.
Jérôme OLLIER

Cetacean Research and Citizen Science in Kenya - @FrontMarineSci - 0 views

  •  
    In 2011, several non-governmental and government agencies established the Kenya Marine Mammal Network (KMMN) to provide a platform for the consistent collection of data on marine mammals along the Kenyan coast, identify areas of importance and engage marine users and the general public in marine mammal conservation. Prior to the KMMN, relatively little was known about marine mammals in Kenya, limiting conservation strategies. The KMMN collects data nationwide through dedicated surveys, opportunistic sightings and participative citizen science, currently involving more than 100 contributors. This paper reviews data on sightings and strandings for small cetaceans in Kenya collated by the KMMN. From 2011 to 2019, 792 records of 11 species of small cetaceans were documented. The most frequently reported inshore species were the Indo-Pacific bottlenose dolphin and Indian Ocean humpback dolphin. Offshore species, included killer whales, short-finned pilot whale and long-snouted spinner dolphin. Indo-Pacific bottlenose dolphins, long-snouted spinner dolphins, striped dolphins and Risso's dolphins were recorded through stranding reports. The efforts of the KMMN were disseminated through international meetings (International Whaling Commission, World Marine Mammal Conference), national status reports, outreach and social media. Data has also supported the identification of three IUCN Important Marine Mammal Areas and one Area of Interest in Kenya. Further research is needed to improve estimates of cetacean abundance and distribution, particularly in unstudied coastal areas, and to assess the extent of anthropogenic threats associated with fisheries, coastal and port development, seismic exercises and unregulated tourism. The expansion of the network should benefit from the participation of remote coastal fishing communities, government research agencies, tourism and seismic operations, among others. The KMMN demonstrated the value of dedicated and citizen science data to enh
Jérôme OLLIER

Coastal Landform Constrains Dispersal in Mangroves - @FrontMarineSci - 0 views

  •  
    Mangrove forests are dynamic ecosystems found along low-lying coastal plains along tropical, subtropical, and some warm-temperate coasts, predominantly on tidal flats fringing deltas, estuaries, bays, and oceanic atolls. These landforms present varied hydrodynamic and geomorphological settings for mangroves to persist and could influence the extent of within-site propagule transport and subsequent local regeneration. In this study, we examined how different landform characteristics may influence local genetic diversity, kinship, and neighborhood structure of mangrove populations. To do so, we considered independent populations of Avicennia marina, one of the most abundant and widespread mangrove species, located in estuarine and coastal bay environments spread across the Western Indian Ocean region. A transect approach was considered to estimate kinship-based fine-scale spatial genetic structure using 15 polymorphic microsatellite markers in 475 adult A. marina trees from 14 populations. Elevated kinship values and significant fine-scale structure up to 30, 60, or 90 m distances were detected in sheltered systems void of river discharge, suggesting a setting suitable for very local propagule retention and establishment within a neighborhood. Slopes of a linear regression over restricted distance within 150 m were significantly declining in each sheltered transect. Contrastingly, such a spatial structure has not been detected for A. marina transects bordering rivers in the estuarine systems considered, or alongside partially sheltered creeks, suggesting that recruitment here is governed by unrelated carried-away mixed-origin propagules. South African populations showed strong inbreeding levels. In general, we have shown that A. marina populations can locally experience different modes of propagule movement, explained from their position in different coastal landforms. Thus, the resilience of mangroves through natural regeneration is achieved by different responses in
Jérôme OLLIER

Biophysical Control on Variability in Phytoplankton Production and Composition in the S... - 0 views

  •  
    The existing oligotrophic conditions in the southwest tropical Indian Ocean (SWTIO) is believed to be one of the causes for low phytoplankton productivity (PP) observed in this area. Though many remote sensing based studies on PP have been carried out in SWTIO, studies on in situ estimation of PP and its cause(s) of variability are scarce. Thus, to understand the controlling environmental forcings on the variability in phytoplankton biomass (chlorophyll-a; Chl-a), community structure and productivity, time series (TS; @6 h intervals for 10 days; 1 station), plus point measurements (RT; 3 stations) were carried out in the SWTIO during the southwest monsoon (June) of 2014. Strong thermohaline stratification resulted in shallow (35-40 m) mixed layer (ML). Subsurface Chl-a maximum (SCM) was observed to oscillate within 40-60 m with majority of peaks at ∼50 m, and existed just beneath the ML depth. Light availability during sampling period was highly conducive for algal growth; nutrient ratios indicated N- and Si-limitation (N:P < 10; N:Si < 1 and SiO4 < 5 μM) suggesting unfavorable conditions for diatoms and/or silicoflagellates growth within the ML. Furthermore, HPLC-based pigments analysis confirmed dominance of nano-sized plankton (53%) followed by pico-plankton (25%) and micro-plankton (22%). Column integrated production (IPP) varied from 176 to 268 (241 ± 43 mgC m-2 d-1) and was relatively stable during the observation period, except a low value (19.4 E m-2 d-1) on 11 June, which was ascribed to the drastic dropdown in the daily incident PAR due to overcast sky. Vertical profiles of PP and Chl-a resembled each other and maximum PP usually corresponded with SCM depths. The Chl-a-specific PP (PB) was mostly higher within the ML and showed no surface photoinhibition, due to the dominance of smaller phytoplankton (less prone to pigment packaging effect) in the surface layer. Comparatively, higher PB within the ML is indicative of phytoplankton healthine
Jérôme OLLIER

Regional Movements of Reef Manta Rays (Mobula alfredi) in Seychelles Waters - @FrontMar... - 0 views

  •  
    The decline in numbers of reef manta rays (Mobula alfredi) throughout their range has highlighted the need for improved information on their spatial ecology in order to design effective conservation strategies for vulnerable populations. To understand their patterns of movement in Seychelles, we used three techniques-archival pop-up satellite tags, acoustic tags, and photo-identification-and focussed on the aggregation at D'Arros Island and St. Joseph Atoll within the Amirantes Group. M. alfredi were photographed within six of the seven Island Groups of Seychelles, with 64% of individuals being resighted at least once between July 2006 and December 2019 over timeframes of 1-3,462 days (9.5 years; median = 1,018 days). Only three individuals from D'Arros Island were resighted at a second aggregation site located more than 200 km away at St. François Atoll during photo-identification surveys. Satellite-tracked M. alfredi (n = 5 tracks; maximum 180 days) remained within the boundary of the Seychelles Exclusive Economic Zone, where they spent the majority of their time (87%) in the upper 50 m of the water column in close proximity to the Amirantes Bank. The inclusion of acoustic tagging data in the models of estimated satellite-track paths significantly reduced the errors associated with the geolocation positions derived from archived light level data. The insights gained into the patterns of horizontal and vertical movements of M. alfredi using this multi-technique approach highlight the significance of D'Arros Island and St. Joseph Atoll, and the wider Amirantes Group, to M. alfredi in Seychelles, and will benefit future conservation efforts for this species within Seychelles and the broader Western Indian Ocean.
Jérôme OLLIER

Asymptotic Growth of Whale Sharks Suggests Sex-Specific Life-History Strategies - @Fron... - 0 views

  •  
    Age and growth data are central to management or conservation strategies for any species. Circumstantial evidence suggests that male whale sharks (Rhincodon typus) grow to asymptotic sizes much smaller than those predicted by age and growth studies and consequently, there may be sex-specific size and growth patterns in the species. We tested this hypothesis by using stereo-video and photo-identification studies to estimate the growth rates of 54 whale sharks that were resighted over a period of up to a decade at Ningaloo Reef. We found that male growth patterns were consistent with an average asymptotic total length (TL) of approximately 8-9 m, a size similar to direct observations of size at maturity at aggregation sites world-wide and much smaller than the sizes predicted by earlier modeling studies. Females were predicted to grow to an average asymptotic length of around 14.5 m. Males had growth coefficients of K = 0.088 year-1, whereas limited resighting data suggested a growth coefficient of K = 0.035 year-1 for females. Other data including re-sightings of an individual male over two decades, records of sex-specific maximum sizes of individuals captured in fisheries and data from juveniles growing in aquaria were also consistent with the suggestion of sex-specific growth profiles for the species. We argue that selection for sex-specific growth patterns could explain many of the otherwise enigmatic patterns in the ecology of this species including the tendency of the species to form aggregations of juvenile males in coastal waters.
Jérôme OLLIER

Massive Nitrogen Loss Over the Western Indian Continental Shelf During Seasonal Anoxia:... - 0 views

  •  
    The western Indian continental shelf houses the world's largest naturally formed coastal low-oxygen zone that develops seasonally during the summer monsoon. We investigated multiple reductive nitrogen transformation pathways and quantified their rates in this system through anaerobic incubations with additions of 15N-labeled substrates during the anoxic period for three consecutive years (2008-2010). Addition of 15N labeled ammonium (15NH4+) resulted in low to moderate anaerobic ammonia oxidation (Anammox) rates in about half of our incubations from the oxygen depleted waters. In contrast, incubations with labeled nitrite (15NO2-) led to large production of 30N2 over 29N2 in all incubation experiments, indicating denitrification to be the dominant N-loss pathway. Rates of dissimilatory nitrate/nitrite reduction to ammonium (DNRA) were found to be highly variable and were lower by an order of magnitude than the denitrification rates. Extrapolation of average rates over the sampling periods and volume of anoxic waters showed large nitrogen removal (3.70-11.1 Tg year-1) which is about three times as high as the previously reported estimate (1.3-3.8 Tg year-1). Despite the small area it occupies, this shallow seasonal anoxic zone may account for as much as 20-60% the of the total annual fixed nitrogen loss in the perennial oxygen minimum zone of the Arabian Sea.
1 - 20 of 49 Next › Last »
Showing 20 items per page