Skip to main content

Home/ About The Indian Ocean/ Group items tagged biomasse

Rss Feed Group items tagged

Jérôme OLLIER

Distribution Pattern of the Benthic Meiofaunal Community Along the Depth Gradient of th... - 0 views

  •  
    The continental margin harbors a variety of habitats that support incredible biodiversity and the function of their oceans' ecosystems. The meiofauna is considered a significant component of the benthic faunal community from the polar to the tropical regions. The meiofaunal community in the deep Indian Ocean, especially along the depth gradient, is poorly investigated. The present study aims to explore the benthic meiofaunal community structure along the depth gradients and its associated environment in the western Indian continental margin (WICM) and abyssal plain in the eastern Arabian Sea. Sediment samples were collected from seven different depths (111-3,918 m) along the WICM including the oxygen minimum zone (OMZ) and abyssal plain. A total of 22 taxa (groups) were encountered along the WICM. The nematodes (85%) were the most dominant taxa in all the depths, followed by copepods (11%), nauplii (5%), and polychaetes (1.36%). Our results suggest that (a) the organic matter has accumulated in OMZ sites; (b) a high amount of total organic carbon did not influence the meiofaunal density or biomass; (c) oxygen and depth gradients were significant drivers of the meiofaunal community, low levels of oxygen contributed to lower taxa diversity and density at 485 and 724 m depths; (d) a significant relationship of meiofaunal density and biomass with chloroplastic pigment equivalent (CPE) values indicates pelagic-benthic coupling. Copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans were affected by the low-oxygen conditions at the OMZ sites. Enhanced meiofaunal diversity, density, and biomass at deeper sites (non-OMZ-D) was attributed to increased abundance of copepods, nauplii, tanaidaceans, isopods, kinorhynchs, and cumaceans and were mostly concentrated on the surface sediment (0-4 cm) triggered by enhanced bottom-water oxygen and freshness of available food outside the OMZ except 3,918 m. Therefore, the present study showed the meiofaunal community
Jérôme OLLIER

Via @MBSociety - Coral-macroalgal interactions: Herbivory and substrate type influence ... - 0 views

  •  
    Introduced macroalgae becoming invasive may alter ecological functions and habitats in recipient ecosystems. In the Western Indian Ocean (WIO), non-native strains of the native macroalgae Eucheuma denticulatum were introduced for farming practices and consequently spread into the surrounding seascape. We investigated potential effects of non-native and native strains of this macroalgae on a branching coral. We conducted a four-factor field experiment where we examined growth and holdfast development of introduced and native E. denticulatum on live and dead branches of Acropora sp. in the presence and absence of herbivores in Unguja Island, Zanzibar. Moreover, we estimated coral and macroalgae condition by visual examinations, gene expression analyses, and photosynthetic measurements. Macroalgae did not attach to any live coral and coral condition was not impacted by the presence of E. denticulatum, regardless of geographical origin. Instead, necrotic tissue on the macroalgae in areas of direct contact with corals indicated damage inflicted by the coral. The biomass of E. denticulatum did not differ between the replicates attached to live or dead corals in the experiment, yet biomass was strongly influenced by herbivory and replicates without protection from herbivores had a significantly lower biomass. In the absence of herbivory, introduced E. denticulatum had significantly higher growth rates than native algae based on wet weight measurements. These results contribute to an increased understanding of environmental effects by the farming of a non-native strain of algae on corals and stresses the importance to maintain viable populations of macroalgal feeding fishes in such areas.
Jérôme OLLIER

Evaluating the stock status of 10 croaker species landed along the north-eastern Arabia... - 0 views

  •  
    India accounts for nearly 60% of the croakers caught in the Indian Ocean. The north-west (NW) coast of India is the most productive fishing ground for croakers and contributes almost half of the nation's croaker catch. Lesser sciaenids (small- and medium-sized croakers) are the multi-species complex landed by commercial trawlers along the NW coast of India. Despite several notable changes in the fishing pattern in the region, such as the emergence of multi-day fishing and increasing dominance of pelagic trawling, there is no recent assessment of this major demersal fishery group. The present study evaluates the stock status of 10 species of lesser sciaenids forming the commercial fishery in the region using length frequency data collected during 2020-2021. The assessment was made using the length-based Bayesian biomass (LBB) estimation method. The indicators of relative biomass (B/B0 and B/BMSY) showed that most of the species (seven) are fully exploited, whereas two and one species were found under- and over-exploited, respectively. Excessive juveniles (Lmean/Lopt and Lc/Lc_opt< 0.90) in catches were observed in the case of Paranibea semiluctuosa. A sufficient number of larger individuals (L95th/Linf< 0.90) in the population were lacking in the case of Johnius belangerii and Otoithes ruber. However, the study indicated a gradual improvement in stock status for most of the species over previous estimates, which can be attributed to the diversion of trawl fishing efforts towards the pelagic realm.
Jérôme OLLIER

Diversity and community structure of microzooplankton in the eastern Indian Ocean durin... - 0 views

  •  
    Microzooplankton (MZP) are an important part of the microbial food web and play a pivotal role in connecting the classic food chain with the microbial loop in the marine ecosystem. They may play a more important role than mesozooplankton in the lower latitudes and oligotrophic oceans. In this article, we studied the species composition, dominant species, abundance, and carbon biomass of MZP, including the relationship between biological variables and environmental factors in the eastern equatorial Indian Ocean during the spring intermonsoon. We found that the MZP community in this ocean showed a high species diversity, with a total of 340 species. Among these, the heterotrophic dinoflagellates (HDS) (205 species) and ciliates (CTS) (126 species) were found to occupy the most significant advantageous position. In addition, CTS (45.3%) and HDS (39.7%) accounted for a larger proportion of the population abundance, while HDS (47.1%) and copepod nauplii (CNP) (46.4%) made a larger contribution to the carbon biomass. There are significant differences in the ability of different groups of MZP to assimilate organic carbon. In this sea area, MZP are affected by periodic currents, and temperature is the main factor affecting the distribution of the community. The MZP community is dominated by eurytopic species and CNP. CTS are more sensitive to environmental changes than HDS, among which Ascampbelliella armilla may be a better habitat indicator species. In low-latitude and oligotrophic ocean areas, phytoplankton with smaller cell diameters were found to occupy a higher proportion, while there was no significant correlation between the total concentration of integrated chlorophyll a and the biological variables of MZP. Therefore, we propose that the relationship between size-fractionated phytoplankton and MZP deserves further study. In addition, the estimation of the carbon biomass of MZP requires the establishment of more detailed experimental methods to reflect the real situ
Jérôme OLLIER

Maintaining Fish Biomass the Key to Conserving Reef Fish Biodiversity - @WCSNewsroom - 0 views

  •  
    A new study appearing in the journal Marine Ecology Progress Series has found that conserving fish diversity in Madagascar's coral reef systems may depend on maintaining fish biomass above critical levels, according to scientists from WCS (Wildlife Conservation Society) and ES Caribbean.
Jérôme OLLIER

Coral Reef Parks Protecting Only 40 Percent of Fish Biomass Potential - @WCSNewsroom - 0 views

  •  
    Coral Reef Parks Protecting Only 40 Percent of Fish Biomass Potential.
Jérôme OLLIER

Community-managed coral reef restoration in southern Kenya initiates reef recovery usin... - 0 views

  •  
    Monitoring of reef restoration efforts and artificial reefs (ARs) has typically been limited to coral fragment survival, hampering evaluation of broader objectives such as ecosystem recovery. This study aimed to determine to what extent AR design influences the ecological recovery of restored reefs by monitoring outplanted coral fragments, benthic cover, coral recruitment and fish and invertebrate communities for two years. Four AR designs (16 m2), unrestored controls and natural reef patches as reference (n = 10) were established in Mkwiro, Kenya. ARs consisted either of concrete disks with bottles, layered concrete disks, metal cages or a combination thereof. A mixture of 18 branching coral species (mainly Acropora spp.) was outplanted on ARs at a density of 7 corals m-2. After two years, 60% of all outplanted fragments had survived, already resulting in coral cover on most ARs comparable (though Acropora-dominated) to reference patches. Coral survival differed between ARs, with highest survival on cages due to the absence of crown-of-thorns sea star predation on this design. In total, 32 coral genera recruited on ARs and recruit densities were highest on reference patches, moderate on concrete ARs and low on cages. ARs and reference patches featured nearly twice the fish species richness and around an order of magnitude higher fish abundance and biomass compared to control patches. Fish abundance and biomass strongly correlated with coral cover on ARs. AR, reference and control patches all had distinct fish species compositions, but AR and reference patches were similar in terms of trophic structure of their fish communities. Motile invertebrates including gastropods, sea urchins, sea cucumbers and sea stars were present at ARs, but generally more abundant and diverse at natural reference patches. Taken together, all studied ecological parameters progressed towards reef ecosystem recovery, with varying influences of AR design and material. We recommend a combinat
Jérôme OLLIER

An Evaluation of the Impact of Pandemic Driven Lockdown on the Phytoplankton Biomass Ov... - 0 views

  •  
    The unprecedented nationwide lockdown due to the 'coronavirus disease 2019' (COVID-19) affected humans and the environment in different ways. It provided an opportunity to examine the effect of reduced transportation and other anthropogenic activities on the environment. In the current study, the impact of lockdown on chlorophyll-a (Chl-a) concentration, an index of primary productivity, over the northern Indian Ocean (IO), is investigated using the observations and a physical-biogeochemical model. The statistics of model validation against observations shows a correlation coefficient of 0.85 (0.89), index of agreement as 0.90 (0.91). Root mean square error of 0.45°C (0.50°C) for sea surface temperature over the Bay of Bengal (BoB) (Arabian Sea, AS) is observed. The model results are analyzed to understand the upper-oceanic physical and biological processes during the lockdown. A comparison of the observed and model-simulated data during the lockdown period (March-June, 2020) and pre-pandemic period (March-June, 2019) shows significant differences in the physical (temperature and salinity) and biogeochemical (Chl-a concentration, nutrient concentration, and dissolved oxygen) parameters over the western AS, western BoB, and regions of Sri Lanka. During the pandemic, the reduced anthropogenic activities lead to a decrease in Chl-a concentration in the coastal regions of western AS and BoB. The enhanced aerosol/dust transport due to stronger westerly winds enhanced phytoplankton biomass in the western Arabian Sea (WAS) in May-June of the pandemic period.
Jérôme OLLIER

Achieving Fish Biomass Targets: The Key to Securing a Sustainable Future For The Wester... - 0 views

  •  
    Management systems and distance to fish markets reliably predict the status of fish.
Jérôme OLLIER

The Decline and Recovery of a Crab Population From an Extreme Marine Heatwave and a Cha... - 0 views

  •  
    Driven by a very strong La Niña event and a record strength Leeuwin Current, the 2011 Western Australian marine heatwave (MHW) raised sea surface temperatures (SSTs) along the Western Australian coastline by up to 5°C between November 2010 and March 2011. This single thermal perturbation led to several mortality events and recruitment impairment of commercially important species including Australia's single highest producing blue swimmer crab (Portunus armatus) fishery in Shark Bay. Monthly catch landings dramatically declined from 166 t in April 2011 to 24°C, and detrimental when they exceed 26°C as was the case during the 2011 MHW when SSTs reached 29°C inside Shark Bay. Partial recovery of the crab stock 18 months after the MHW was strongly associated with mean summer temperatures returning below 24°C. Together with a change in management to a quota system, the fishery returned to full recovery status in 2018 with sustainable catch levels of up to 550 t. Long term productivity of this fishery is now at high risk from climate change impacts with shifts in winter water temperatures being cooler by 2°C and occurring earlier by few months inside the Bay. This cooling trend appears to be impacting the spawning period with the timing of peak recruitment also occurring earlier, shifting from February to November. The impacts of the 2011 MHW highlighted the risk to stock sustainability through external drivers such as climate change that was previously poorly understood. The south-west region of Western Australia is considered a climate change hotspot with water temperatures rising at rates above global trends and at inc
Jérôme OLLIER

Biophysical Control on Variability in Phytoplankton Production and Composition in the S... - 0 views

  •  
    The existing oligotrophic conditions in the southwest tropical Indian Ocean (SWTIO) is believed to be one of the causes for low phytoplankton productivity (PP) observed in this area. Though many remote sensing based studies on PP have been carried out in SWTIO, studies on in situ estimation of PP and its cause(s) of variability are scarce. Thus, to understand the controlling environmental forcings on the variability in phytoplankton biomass (chlorophyll-a; Chl-a), community structure and productivity, time series (TS; @6 h intervals for 10 days; 1 station), plus point measurements (RT; 3 stations) were carried out in the SWTIO during the southwest monsoon (June) of 2014. Strong thermohaline stratification resulted in shallow (35-40 m) mixed layer (ML). Subsurface Chl-a maximum (SCM) was observed to oscillate within 40-60 m with majority of peaks at ∼50 m, and existed just beneath the ML depth. Light availability during sampling period was highly conducive for algal growth; nutrient ratios indicated N- and Si-limitation (N:P < 10; N:Si < 1 and SiO4 < 5 μM) suggesting unfavorable conditions for diatoms and/or silicoflagellates growth within the ML. Furthermore, HPLC-based pigments analysis confirmed dominance of nano-sized plankton (53%) followed by pico-plankton (25%) and micro-plankton (22%). Column integrated production (IPP) varied from 176 to 268 (241 ± 43 mgC m-2 d-1) and was relatively stable during the observation period, except a low value (19.4 E m-2 d-1) on 11 June, which was ascribed to the drastic dropdown in the daily incident PAR due to overcast sky. Vertical profiles of PP and Chl-a resembled each other and maximum PP usually corresponded with SCM depths. The Chl-a-specific PP (PB) was mostly higher within the ML and showed no surface photoinhibition, due to the dominance of smaller phytoplankton (less prone to pigment packaging effect) in the surface layer. Comparatively, higher PB within the ML is indicative of phytoplankton healthine
Jérôme OLLIER

Via @MBSociety - Reviews and syntheses: Trends in primary production in the Bay of Ben... - 0 views

  •  
    Ocean primary production is the basis of the marine food web, sustaining life in the ocean via photosynthesis, and removing carbon dioxide from the atmosphere. Recently, a small but significant decrease in global marine primary production has been reported based on ocean color data, which was mostly ascribed to decreases in primary production in the northern Indian Ocean, particularly in the Bay of Bengal. Available reports on primary production from the Bay of Bengal (BoB) are limited, and due to their spatial and temporal variability difficult to interpret. Primary production in the BoB has historically been described to be driven by diatom and chlorophyte clades, while only more recent datasets also show an abundance of smaller cyanobacterial primary producers visually difficult to detect. The different character of the available datasets, i.e., direct counts, metagenomic and biogeochemical data, and satellite-based ocean color observations, make it difficult to derive a consistent pattern. However, making use of the most highly resolved dataset based on satellite imaging, a shift in community composition of primary producers is visible in the BoB over the last 2 decades. This shift is driven by a decrease in chlorophyte abundance and a coinciding increase in cyanobacterial abundance, despite stable concentrations of total chlorophyll. A similar but somewhat weaker trend is visible in the Arabian Sea, where satellite imaging points towards decreasing abundances of chlorophytes in the north and increasing abundances of cyanobacteria in the eastern parts. Statistical analysis indicated a correlation of this community change in the BoB to decreasing nitrate concentrations, which may provide an explanation for both the decrease in eukaryotic nitrate-dependent primary producers and the increase in small unicellular cyanobacteria related to Prochlorococcus, which have a comparably higher affinity to nitrate. Changes in community composition of primary producers and an
Jérôme OLLIER

The sources and transport pathways of sediment in the northern Ninety-east Ridge of the... - 0 views

  •  
    The Ninety-east Ridge (NER) is located in the southern Bay of Bengal in the northeast Indian Ocean and is composed of pelagic and hemipelagic sediments. In addition to contributions from marine biomass, the ridge also contains terrestrially sourced sedimentary material. However, considerable disagreement remains regarding the origin of these terrestrial materials and transport pathways. This paper discusses the collection of seafloor surface sediments and three sediment cores recovered from the northern region of the NER, as well as the analysis of clay minerals, Sr-Nd isotopes, and sediment grain size. The ages of the three core sediments are constrained by AMS 14C dating to better establish the source and transport pathways of the terrestrial materials within NER sediments over the past 35000 years. The research results show that the Qinghai-Tibet Plateau is the predominate source of terrigenous sedimentary material in the NER. In the plateau, the crustal materials were weathered and stripped and then transported to the Andaman Sea via the Irrawaddy River. From there, the material was transported westward by monsoon-driven circulation to the northernmost part of the NER before being transported to the south for final deposition. This transport mode has changed little over the past 35000 years. However, during the rapidly changing climate of the Younger Dryas (12.9~11.5 ka BP), there were some variations in the input amount, grain size, and Sr-Nd isotope value of the source material. The above conclusions are significant for re-evaluating the source of terrigenous sediments, the temporal and spatial changes in transport modes, and the sensitivity of the NER to climatic shifts.
Jérôme OLLIER

Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at ... - 0 views

  •  
    Introduction: Coral bleaching immediately impacts the reef benthos, but effects on fish communities are less well understood because they are often delayed and confounded by anthropogenic interactions.
Jérôme OLLIER

Coupled hydrodynamic and water quality modeling in the coastal waters off Chennai, East... - 0 views

  •  
    Coastal waters are inherently dynamic due to river discharge, industrial effluents, shipping, dredging, waste dumping, and sewage disposal. Population growth in urban cities, climate change and variability, and changes in land-use practices all contribute to pressure on coastal water quality (SKOVSKI et al., 2012; MILLER and HUTCHINS, 2017; KUMAR et al., 2020; Vijay PRAKASH et al., 2021). Anthropogenic activity is evident around these estuaries and coastal and open ocean environments. Hence, it is important to assess the water quality on a regular basis and provide mitigation measures for coastal pollution (YUVARAJ et al., 2018). Improving water quality and variability in coastal waters is necessary and should be prioritized. Observational programs, which are more expensive and time-consuming, aid in understanding the status of water quality and its trends. Many countries have coastal programs that use predictive systems to inform the public and stakeholders about coastal health. Hydrodynamic processes are an integral part of complex surface water systems. The main factor that determines the concentration of pollutants is hydrodynamic transport, which includes advection, dispersion, vertical mixing, and convection (James, 2002). The flow and circulation patterns have a great influence not only on the distribution of temperature, nutrients, and dissolved oxygen (DO) but also on the aggregation and distribution of sediments and pollutants. When a load of pollutants is discharged into coastal waters, it is affected by the fate and transportation processes that change its concentration. Several studies have been conducted to evaluate the coastal water quality spatiotemporally along the east coast of Indian coastal waters using site-specific data and model configuration (PANDA et al., 2006; BHARAHTI et al., 2017; NAIK et al., 2020; MOHANTY et al., 2021). Through numerical modeling and remote sensing, estimation is user-friendly and low-cost in evaluating any water quali
Jérôme OLLIER

Variations of phytoplankton chlorophyll in the Bay of Bengal: Impact of climate changes... - 0 views

  •  
    Phytoplankton biomass, quantified as the concentration of chlorophyll-a (CHL), is the base of the marine food web that supports fisheries production in the Bay of Bengal (BoB). Nutrients from river discharge, the ocean subsurface layer, and the atmosphere have been reported to determine CHL in the BoB. Which source of nutrients mainly determines CHL in different parts of the bay has not been determined. Furthermore, how climate variations influence nutrient inputs from different sources and their impacts on CHL have not been detailed. To address these questions, we used relationships between satellite-derived CHL and in situ river discharge data (a proxy for river-borne nutrients) from 1997 to 2016, physical variables, and modeled dust deposition (DD), a proxy for atmosphere-borne nutrients. Nutrients supplied from the ocean subsurface layer were assessed based on variations in physical parameters (i.e., wind stress curl, sea surface height anomaly, and sea surface temperature). We found that nutrients from the Ganges and Brahmaputra Rivers were important for CHL along the northern coast of the bay. By increasing rainfall and river discharge, La Niña extended high-CHL waters further southward. Nutrients from the ocean subsurface layer determine CHL variations mainly in the southwestern bay. We suggest that the variations in the supply of nutrients from the subsurface layer are related to the generation of mesoscale cyclonic eddies during La Niña, a negative Indian Ocean Dipole, or both. Climate-driven cyclonic eddies together with cyclones can intensify Ekman divergence and synergistically lead to a pronounced increase in CHL in the southwestern bay. Nutrients from the atmosphere mainly determine CHL in the central/eastern BoB. We further suggest that DD in the central/eastern BoB is influenced by ENSO with a 6-7-month time lag. CHL in the central/eastern bay responds to the ENSO 6-7 months after the ENSO peak because of the 6-7-month lag between ENSO and DD
Jérôme OLLIER

Saving Coral Reefs Depends More on Protecting Fish Than Safeguarding Locations - @WCSNe... - 0 views

  •  
    Saving Coral Reefs Depends More on Protecting Fish Than Safeguarding Locations.
  •  
    Saving Coral Reefs Depends More on Protecting Fish Than Safeguarding Locations.
1 - 17 of 17
Showing 20 items per page