Skip to main content

Home/ Vitamin D/ Group items tagged regulates

Rss Feed Group items tagged

Matti Narkia

Induction of Ovarian Cancer Cell Apoptosis by 1,25-Dihydroxyvitamin D3 through the Down... - 0 views

  •  
    Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. Jiang F, Bao J, Li P, Nicosia SV, Bai W. J Biol Chem. 2004 Dec 17;279(51):53213-21. Epub 2004 Oct 12. PMID: 15485861 doi: 10.1074/jbc.M410395200 Overall, the study suggests that the down-regulation of telomerase activity by 1,25(OH)2VD3 and the resulting cell death are important components of the response of OCa cells to 1,25(OH)2VD3-induced growth suppression. Progressive shortening of telomere associated with cell divisions limits the life span of normal cells and eventually leads to senescence. To become immortal, human cancers including OCa are invariably associated with activation of mechanism that maintains telomere length. Approximately 85-90% of cancers show reactivation of telomerase. The present study shows that telomerase in OCa cells is down-regulated by 1,25(OH)2VD3. Down-regulation of telomerase is due to decreased stability of hTERT mRNA rather than VDRE-mediated transcriptional repression through the putative VDRE present in the regulatory region of the hTERT gene. It is known that the inhibition of telomerase may lead to a phenotypic lag during which cells would continue to divide until the point at which the telomeres became critically short. This phenomenon may explain why the apoptotic induction by 1,25(OH)2VD3 needs the treatment for more than 6 days. As mentioned in the results, no detectable shortening of telomeric repeats was observed in parental OVCAR3 cells after 9 days of treatment with 1,25(OH)2VD3 (Fig. 4D). This is likely due to the fact that the short telomere (about 3 kb) in OVCAR3 cells is very close to the minimal length required for survival and that cells with detectably shorter telomere may have been selected against apoptosis. It has been shown that transformed human cells enter crisis once the terminal restriction fragment of the telomere reaches a length of about 4 kb. This is insufficient to protect chro
Matti Narkia

The Vitamin D-Antimicrobial Peptide Pathway and Its Role in Protection Against Infectio... - 0 views

  •  
    The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Gombart AF. Future Microbiol. 2009 Nov;4:1151-65. PMID: 19895218 Vitamin D deficiency has been correlated with increased rates of infection. Since the early 19th century, both environmental (i.e., sunlight) and dietary sources (cod liver) of vitamin D have been identified as treatments for TB. The recent discovery that vitamin D induces antimicrobial peptide gene expression explains, in part, the 'antibiotic' effect of vitamin D and has greatly renewed interest in the ability of vitamin D to improve immune function. Subsequent work indicates that this regulation is biologically important for the response of the innate immune system to wounds and infection and that deficiency may lead to suboptimal responses toward bacterial and viral infections. The regulation of the cathelicidin antimicrobial peptide gene is a human/primate-specific adaptation and is not conserved in other mammals. The capacity of the vitamin D receptor to act as a high-affinity receptor for vitamin D and a low-affinity receptor for secondary bile acids and potentially other novel nutritional compounds suggests that the evolutionary selection to place the cathelicidin gene under control of the vitamin D receptor allows for its regulation under both endocrine and xenobiotic response systems. Future studies in both humans and humanized mouse models will elucidate the importance of this regulation and lead to the development of potential therapeutic applications
Matti Narkia

JNNP -- eLetters for Soilu-Hänninen et al., 79 (2) 152-157 - 0 views

  •  
    Vitamin D may suppress infections which lead to development of Multiple Sclerosis Steven R Brenner, None (16 August 2007) J Neurol Neurosurg Psychiatry 2008 I read the article with reference to the inverse relationship between multiple sclerosis clinical activity and deficiency of vitamin D by Soilu-Hannienen (1) with interest, and was considering what mechanism could be in play to cause such a relationship. 25-hydroxylated metabolites of vitamin D act as intracellular regulators of the synthesis and action of defensin (2) molecules against bacterial antigens, defensin being an endogenously synthesized antimicrobial substance (2). Human cathelicidin antimicrobial peptide gene is a target of vitamin D receptor and is strongly up-regulated by 1,25-dihydroxyvitamin D3, indicating vitamin D receptor and the 1,25-dihydroxyvitaminD3 regulate primate innate immunity (3)
Matti Narkia

Vitamin D, a Gene-Regulating Super-Nutrient - 0 views

  •  
    Your cells use vitamin D to directly regulate your genes, making it one of the most powerful compounds in human health.
Matti Narkia

Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an ess... - 0 views

  •  
    Holick, M. F., MacLaughlin, J. A. & Doppelt, S. H. (1981) Factors that influence the cutaneous photosynthesis of previtamin D3. Science 211:590-593 When human skin was exposed to simulated solar ultraviolet radiation, epidermal 7-dehydrocholesterol was converted to previtamin D3. During prolonged exposure to simulated solar ultraviolet radiation, the synthesis of previtamin D3 reached a plateau at about 10 to 15 percent of the original 7-dehydrocholesterol content, and previtamin D3 was photoisomerized to two biologically inert isomers, lumisterol3 and tachysterol3. Increases either in skin melanin concentration or in latitude necessitated increases in the exposure time to simulated solar ultraviolet radiation required to maximize the formation, but not the total content, of previtamin D3. In order of importance, the significant determinants limiting the cutaneous production of previtamin D3 are (i) photochemical regulation, (ii) pigmentation, and (iii) latitude.
Matti Narkia

Sunlight Regulates the Cutaneous Production of Vitamin D3 by Causing Its Photodegradati... - 0 views

  •  
    Sunlight regulates the cutaneous production of vitamin D3 by causing its photodegradation. Webb AR, DeCosta BR, Holick MF. J Clin Endocrinol Metab. 1989 May;68(5):882-7. PMID: 2541158 doi:10.1210/jcem-68-5-882 Vitamin D3 proved to be exquisitely sensitive to sunlight, and once formed in the skin, exposure to sunlight resulted in its rapid photodegradation to a variety of photoproducts, including 5,6-transvitamin D3, suprasterol I, and suprasterol II.suprasterol I, and suprasterol II.
Matti Narkia

A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid horm... - 0 views

  •  
    A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. Soilu-Hänninen M, Laaksonen M, Laitinen I, Erälinna JP, Lilius EM, Mononen I. J Neurol Neurosurg Psychiatry. 2008 Feb;79(2):152-7. Epub 2007 Jun 19. PMID: 17578859 doi:10.1136/jnnp.2006.105320 Conclusions: The endocrine circuitry regulating serum calcium may be altered in MS. There is an inverse relationship between serum vitamin D level and MS clinical activity. The role of vitamin D in MS must be explored further.
Matti Narkia

Vitamin D A Key Player In Overall Health Of Several Body Organs, Says Biochemist - 0 views

  •  
    Vitamin D A Key Player In Overall Health Of Several Body Organs, Says Biochemist In a paper published in the August issue of the American Journal of Clinical Nutrition, Norman identifies vitamin D's potential for contributions to good health in the adaptive and innate immune systems, the secretion and regulation of insulin by the pancreas, the heart and blood pressure regulation, muscle strength and brain activity. In addition, access to adequate amounts of vitamin D is believed to be beneficial towards reducing the risk of cancer. Norman also lists 36 organ tissues in the body whose cells respond biologically to vitamin D. The list includes bone marrow, breast, colon, intestine, kidney, lung, prostate, retina, skin, stomach and the uterus.
Matti Narkia

Exapation of an ancient Alu short interspersed element provides a highly conserved vita... - 0 views

  •  
    Conclusion We demonstrated that the VDRE in the CAMP gene originated from the exaptation of an AluSx SINE in the lineage leading to humans, apes, OWMs and NWMs and remained under purifying selection for the last 55-60 million years. We present convincing evidence of an evolutionarily fixed, Alu-mediated divergence in steroid hormone nuclear receptor gene regulation between humans/primates and other mammals. Evolutionary selection to place the primate CAMP gene under regulation of the vitamin D pathway potentiates the innate immune response and may counter the anti-inflammatory properties of vitamin D. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. Gombart AF, Saito T, Koeffler HP. BMC Genomics. 2009 Jul 16;10:321. PMID: 19607716 doi:10.1186/1471-2164-10-321
Matti Narkia

Vitamin D signaling, infectious diseases, and regulation of innate immunity. - Infect I... - 0 views

  •  
    Vitamin D signaling, infectious diseases, and regulation of innate immunity. White JH. Infect Immun. 2008 Sep;76(9):3837-43. Epub 2008 May 27. Review. PMID: 18505808 doi:10.1128/IAI.00353-08
Matti Narkia

Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-α) in pr... - 0 views

  •  
    Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-alpha) in prostate cancer cells. Golovko O, Nazarova N, Tuohimaa P. Life Sci. 2005 Jun 17;77(5):562-77. Epub 2005 Feb 25. PMID: 15904673 doi:10.1016/j.lfs.2004.10.072 Combined addition of human recombinant TNF-alpha with calcitriol or CB1093 cause enhanced effect in induction of apoptosis. We conclude that under physiological conditions vitamin D activates only the transcription of TNF-alpha gene, for TNF-alpha protein synthesis additional cofactors are required. Therefore a cooperation of vitamin D and TNF-alpha may play an important role in the control of cell growth in prostate cancer.
Matti Narkia

Immunosteroid as a regulator for Th1/Th2 balance: its possible role in autoimmune disea... - 0 views

  •  
    Immunosteroid as a regulator for Th1/Th2 balance: its possible role in autoimmune diseases. Matsuzaki J, Tsuji T, Imazeki I, Ikeda H, Nishimura T. Autoimmunity. 2005 Aug;38(5):369-75. Review. PMID: 16227152
Matti Narkia

Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin ... - 0 views

  •  
    Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3.\nGombart AF, Borregaard N, Koeffler HP.\nFASEB J. 2005 Jul;19(9):1067-77.\nPMID: 15985530
Matti Narkia

Schematic diagram of cutaneous production of vitamin D and its metabolism and regulatio... - 0 views

  •  
    Schematic diagram of cutaneous production of vitamin D and its metabolism and regulation for calcium homeostasis and cellular growth - Figure 3 from the study Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, can
Matti Narkia

Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is re... - 0 views

  •  
    Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D.\nRamagopalan SV, Maugeri NJ, Handunnetthi L, Lincoln MR, Orton SM, Dyment DA, Deluca GC, Herrera BM, Chao MJ, Sadovnick AD, Ebers GC, Knight JC.\nPLoS Genet. 2009 Feb;5(2):e1000369. Epub 2009 Feb 6.\nPMID: 19197344 [
Matti Narkia

Vitamin D and Vitamin K Team Up to Lower CVD Risk - Part II - 0 views

  •  
    Strong correlations have been noted between cardiovascular diseases and low bone density / osteoporosis-connections so strong that the presence of one is considered a likely predictor of the other. This relationship has led to the hypothesis that these conditions share core pathophysiological mechanisms. Recent advances in our understanding of the complimentary roles played by vitamin D3 and vitamin K2 in vascular and bone health provide support for this hypothesis, along with insight into key metabolic dysfunctions underlying cardiovascular disease and osteoporosis. Part II, The Vitamin K Connection to Cardiovascular Health, reviews the ways in which vitamin K regulates calcium utlization, preventing vascular and soft tissue calcification while complimenting the bone-building actions of vitamin D, and also discusses vitamin K safety and dosage issues, and the necessity of providing vitamin K and vitamin A along with vitamin D to preclude adverse effects associated with hypervitaminosis D.
Matti Narkia

Infant vitamin d supplementation and allergic conditions in adulthood: northern Finland... - 0 views

  •  
    To conclude, our findings suggest an association between large-dose vitamin D supplementation in infancy and an increased risk of atopy, allergic rhinitis, and asthma later in life. Further study is required to determine whether these observations could imply that vitamin D supplementation in infancy may have long-term effects on immune regulation, or if they reflect some unmeasured determinants of vitamin D supplementation Infant vitamin d supplementation and allergic conditions in adulthood: northern Finland birth cohort 1966. Hyppönen E, Sovio U, Wjst M, Patel S, Pekkanen J, Hartikainen AL, Järvelinb MR. Ann N Y Acad Sci. 2004 Dec;1037:84-95. DOI: 10.1196/annals.1337.013 PMID: 15699498
Matti Narkia

Key feature of immune system survived in humans, other primates for 60 million years - 0 views

  •  
    A new study has concluded that one key part of the immune system, the ability of vitamin D to regulate anti-bactericidal proteins, is so important that is has been conserved through almost 60 million years of evolution and is shared only by primates, including humans - but no other known animal species.
Matti Narkia

Acid-base balance and bone - Acid-base balance, dentinogenesis and dental caries: Exper... - 0 views

  •  
    Acid-base balance has an effect on bone turnover, especially on the rates of bone resorption and calcium mobilization. Bone mineral participates in the defense against acid-base disturbances, especially against metabolic acidosis (Lemann et al. 1966, Green & Kleeman 1991). The role of the bone mineral is important in the acid-base disorders, as no appreciable change in the intestinal calcium absorption occurs (Bichara et al. 1990). In the mammalian body, mainly three hormones regulate the calcium metabolism and the bone turnover. 1,25-dihydroxycholecalciferol (vitamin D derivative) increases calcium absorption from the intestine and, indirectly, from bone. Parathyroid hormone mobilizes calcium from the bone and increases the urinary phosphate excretion. Calcitonin inhibits bone resorption (Ganong 1981). Used as drugs, these hormones are also capable of inducing acid-base disorders. Calcitonin administration (Escanero et al. 1991) and vitamin D excess (Bichara et al. 1990) have been reported to cause metabolic alkalosis.
Matti Narkia

Use of vitamin D in clinical practice. - Altern Med Rev. 2008 Mar - 0 views

  •  
    Use of vitamin D in clinical practice. Cannell JJ, Hollis BW. Altern Med Rev. 2008 Mar;13(1):6-20. PMID: 18377099 The recent discovery--from a meta-analysis of 18 randomized controlled trials--that supplemental cholecalciferol (vitamin D) significantly reduces all-cause mortality emphasizes the medical, ethical, and legal implications of promptly diagnosing and adequately treating vitamin D deficiency. Not only are such deficiencies common, and probably the rule, vitamin D deficiency is implicated in most of the diseases of civilization. Vitamin D's final metabolic product is a potent, pleiotropic, repair and maintenance, seco-steroid hormone that targets more than 200 human genes in a wide variety of tissues, meaning it has as many mechanisms of action as genes it targets. One of the most important genes vitamin D up-regulates is for cathelicidin, a naturally occurring broad-spectrum antibiotic. Natural vitamin D levels, those found in humans living in a sun-rich environment, are between 40-70 ng per ml, levels obtained by few modern humans. Assessing serum 25-hydroxy-vitamin D (25(OH)D) is the only way to make the diagnosis and to assure treatment is adequate and safe. Three treatment modalities exist for vitamin D deficiency: sunlight, artificial ultraviolet B (UVB) radiation, and vitamin D3 supplementation. Treatment of vitamin D deficiency in otherwise healthy patients with 2,000-7,000 IU vitamin D per day should be sufficient to maintain year-round 25(OH)D levels between 40-70 ng per mL. In those with serious illnesses associated with vitamin D deficiency, such as cancer, heart disease, multiple sclerosis, diabetes, autism, and a host of other illnesses, doses should be sufficient to maintain year-round 25(OH)D levels between 55 -70 ng per mL. Vitamin D-deficient patients with serious illness should not only be supplemented more aggressively than the well, they should have more frequent monitoring of serum 25(OH)D and serum calcium. Vitamin D should always be
1 - 20 of 30 Next ›
Showing 20 items per page