Skip to main content

Home/ Vitamin D/ Group items tagged gene-regulation

Rss Feed Group items tagged

Matti Narkia

The Vitamin D-Antimicrobial Peptide Pathway and Its Role in Protection Against Infectio... - 0 views

  •  
    The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Gombart AF. Future Microbiol. 2009 Nov;4:1151-65. PMID: 19895218 Vitamin D deficiency has been correlated with increased rates of infection. Since the early 19th century, both environmental (i.e., sunlight) and dietary sources (cod liver) of vitamin D have been identified as treatments for TB. The recent discovery that vitamin D induces antimicrobial peptide gene expression explains, in part, the 'antibiotic' effect of vitamin D and has greatly renewed interest in the ability of vitamin D to improve immune function. Subsequent work indicates that this regulation is biologically important for the response of the innate immune system to wounds and infection and that deficiency may lead to suboptimal responses toward bacterial and viral infections. The regulation of the cathelicidin antimicrobial peptide gene is a human/primate-specific adaptation and is not conserved in other mammals. The capacity of the vitamin D receptor to act as a high-affinity receptor for vitamin D and a low-affinity receptor for secondary bile acids and potentially other novel nutritional compounds suggests that the evolutionary selection to place the cathelicidin gene under control of the vitamin D receptor allows for its regulation under both endocrine and xenobiotic response systems. Future studies in both humans and humanized mouse models will elucidate the importance of this regulation and lead to the development of potential therapeutic applications
Matti Narkia

Vitamin D, a Gene-Regulating Super-Nutrient - 0 views

  •  
    Your cells use vitamin D to directly regulate your genes, making it one of the most powerful compounds in human health.
Matti Narkia

Exapation of an ancient Alu short interspersed element provides a highly conserved vita... - 0 views

  •  
    Conclusion We demonstrated that the VDRE in the CAMP gene originated from the exaptation of an AluSx SINE in the lineage leading to humans, apes, OWMs and NWMs and remained under purifying selection for the last 55-60 million years. We present convincing evidence of an evolutionarily fixed, Alu-mediated divergence in steroid hormone nuclear receptor gene regulation between humans/primates and other mammals. Evolutionary selection to place the primate CAMP gene under regulation of the vitamin D pathway potentiates the innate immune response and may counter the anti-inflammatory properties of vitamin D. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. Gombart AF, Saito T, Koeffler HP. BMC Genomics. 2009 Jul 16;10:321. PMID: 19607716 doi:10.1186/1471-2164-10-321
Matti Narkia

Induction of Ovarian Cancer Cell Apoptosis by 1,25-Dihydroxyvitamin D3 through the Down... - 0 views

  •  
    Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. Jiang F, Bao J, Li P, Nicosia SV, Bai W. J Biol Chem. 2004 Dec 17;279(51):53213-21. Epub 2004 Oct 12. PMID: 15485861 doi: 10.1074/jbc.M410395200 Overall, the study suggests that the down-regulation of telomerase activity by 1,25(OH)2VD3 and the resulting cell death are important components of the response of OCa cells to 1,25(OH)2VD3-induced growth suppression. Progressive shortening of telomere associated with cell divisions limits the life span of normal cells and eventually leads to senescence. To become immortal, human cancers including OCa are invariably associated with activation of mechanism that maintains telomere length. Approximately 85-90% of cancers show reactivation of telomerase. The present study shows that telomerase in OCa cells is down-regulated by 1,25(OH)2VD3. Down-regulation of telomerase is due to decreased stability of hTERT mRNA rather than VDRE-mediated transcriptional repression through the putative VDRE present in the regulatory region of the hTERT gene. It is known that the inhibition of telomerase may lead to a phenotypic lag during which cells would continue to divide until the point at which the telomeres became critically short. This phenomenon may explain why the apoptotic induction by 1,25(OH)2VD3 needs the treatment for more than 6 days. As mentioned in the results, no detectable shortening of telomeric repeats was observed in parental OVCAR3 cells after 9 days of treatment with 1,25(OH)2VD3 (Fig. 4D). This is likely due to the fact that the short telomere (about 3 kb) in OVCAR3 cells is very close to the minimal length required for survival and that cells with detectably shorter telomere may have been selected against apoptosis. It has been shown that transformed human cells enter crisis once the terminal restriction fragment of the telomere reaches a length of about 4 kb. This is insufficient to protect chro
Matti Narkia

Use of vitamin D in clinical practice. - Altern Med Rev. 2008 Mar - 0 views

  •  
    Use of vitamin D in clinical practice. Cannell JJ, Hollis BW. Altern Med Rev. 2008 Mar;13(1):6-20. PMID: 18377099 The recent discovery--from a meta-analysis of 18 randomized controlled trials--that supplemental cholecalciferol (vitamin D) significantly reduces all-cause mortality emphasizes the medical, ethical, and legal implications of promptly diagnosing and adequately treating vitamin D deficiency. Not only are such deficiencies common, and probably the rule, vitamin D deficiency is implicated in most of the diseases of civilization. Vitamin D's final metabolic product is a potent, pleiotropic, repair and maintenance, seco-steroid hormone that targets more than 200 human genes in a wide variety of tissues, meaning it has as many mechanisms of action as genes it targets. One of the most important genes vitamin D up-regulates is for cathelicidin, a naturally occurring broad-spectrum antibiotic. Natural vitamin D levels, those found in humans living in a sun-rich environment, are between 40-70 ng per ml, levels obtained by few modern humans. Assessing serum 25-hydroxy-vitamin D (25(OH)D) is the only way to make the diagnosis and to assure treatment is adequate and safe. Three treatment modalities exist for vitamin D deficiency: sunlight, artificial ultraviolet B (UVB) radiation, and vitamin D3 supplementation. Treatment of vitamin D deficiency in otherwise healthy patients with 2,000-7,000 IU vitamin D per day should be sufficient to maintain year-round 25(OH)D levels between 40-70 ng per mL. In those with serious illnesses associated with vitamin D deficiency, such as cancer, heart disease, multiple sclerosis, diabetes, autism, and a host of other illnesses, doses should be sufficient to maintain year-round 25(OH)D levels between 55 -70 ng per mL. Vitamin D-deficient patients with serious illness should not only be supplemented more aggressively than the well, they should have more frequent monitoring of serum 25(OH)D and serum calcium. Vitamin D should always be
Matti Narkia

JNNP -- eLetters for Soilu-Hänninen et al., 79 (2) 152-157 - 0 views

  •  
    Vitamin D may suppress infections which lead to development of Multiple Sclerosis Steven R Brenner, None (16 August 2007) J Neurol Neurosurg Psychiatry 2008 I read the article with reference to the inverse relationship between multiple sclerosis clinical activity and deficiency of vitamin D by Soilu-Hannienen (1) with interest, and was considering what mechanism could be in play to cause such a relationship. 25-hydroxylated metabolites of vitamin D act as intracellular regulators of the synthesis and action of defensin (2) molecules against bacterial antigens, defensin being an endogenously synthesized antimicrobial substance (2). Human cathelicidin antimicrobial peptide gene is a target of vitamin D receptor and is strongly up-regulated by 1,25-dihydroxyvitamin D3, indicating vitamin D receptor and the 1,25-dihydroxyvitaminD3 regulate primate innate immunity (3)
Matti Narkia

Animal Pharm: 'Roid Rage: Vitamin D3 -- DO IT (Part II) - 0 views

  •  
    "Vitamin D is not just a sun-derived vitamin, but is a crucial steroid precursor that is transformed into one of the most potent hormones in the human body for strength, power, lung function and regulating gene expression in every organ system. Athletes need Vitamin D. Dr. Cannell has written quite extensively about the role of vitamin D in athletes"
Matti Narkia

Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin ... - 0 views

  •  
    Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3.\nGombart AF, Borregaard N, Koeffler HP.\nFASEB J. 2005 Jul;19(9):1067-77.\nPMID: 15985530
Matti Narkia

Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-α) in pr... - 0 views

  •  
    Vitamin D-induced up-regulation of tumour necrosis factor alpha (TNF-alpha) in prostate cancer cells. Golovko O, Nazarova N, Tuohimaa P. Life Sci. 2005 Jun 17;77(5):562-77. Epub 2005 Feb 25. PMID: 15904673 doi:10.1016/j.lfs.2004.10.072 Combined addition of human recombinant TNF-alpha with calcitriol or CB1093 cause enhanced effect in induction of apoptosis. We conclude that under physiological conditions vitamin D activates only the transcription of TNF-alpha gene, for TNF-alpha protein synthesis additional cofactors are required. Therefore a cooperation of vitamin D and TNF-alpha may play an important role in the control of cell growth in prostate cancer.
Matti Narkia

Vitamin D (Cholecalciferol, Calcitriol) - 0 views

  •  
    Bioactive vitamin D or calcitriol is a steroid hormone that has long been known for its important role in regulating body levels of calcium and phosphorus, and in mineralization of bone. More recently, it has become clear that receptors for vitamin D are present in a wide variety of cells, and that this hormone has biologic effects which extend far beyond control of mineral metabolism. The active form of vitamin D binds to intracellular receptors that then function as transcription factors to modulate gene expression. Like the receptors for other steroid hormones and thyroid hormones, the vitamin D receptor has hormone-binding and DNA-binding domains. The vitamin D receptor forms a complex with another intracellular receptor, the retinoid-X receptor, and that heterodimer is what binds to DNA. In most cases studied, the effect is to activate transcription, but situations are also known in which vitamin D suppresses transcription. Each of the forms of vitamin D is hydrophobic, and is transported in blood bound to carrier proteins. The major carrier is called, appropriately, vitamin D-binding protein. The halflife of 25-hydroxycholecalciferol is several weeks, while that of 1,25-dihydroxycholecalciferol is only a few hours. The vitamin D receptor binds several forms of cholecalciferol. Its affinity for 1,25-dihydroxycholecalciferol is roughly 1000 times that for 25-hydroxycholecalciferol, which explains their relative biological potencies
Matti Narkia

Vitamin D Deficiency Lead to Disease - Dr. Weil's Weekly Bulletin - 0 views

  •  
    "If you're running low on vitamin D - as an estimated 70 percent of the U.S. population is - your immune system may not be functioning as well as it should. As a result, you may be more vulnerable to infectious diseases than you would if your vitamin D levels were optimal. Worse, you could be at higher than normal risk of a long list of diseases including heart disease and several kinds of cancer. A report recently published journal, Future Microbiology, highlighted research at the Linus Pauling Institute at Oregon State University, which has shown that vitamin D induces expression of an antimicrobial peptide gene called cathelicidin that is the "first line of defense" in the immune system's response to minor wounds, cuts and bacterial and viral infections. The regulation of cathelicidin by vitamin D could help explain its vital role in immune function. The report noted that vitamin D is a key cofactor in reducing inflammation, in blood pressure control and helping to protect against heart disease. Author Adrian Gombart explains that there is still much to explore about D's mechanisms of action, the potential use of synthetic analogs of it in new treatments, and its duty in fighting infection."
1 - 11 of 11
Showing 20 items per page