Skip to main content

Home/ Dr. Goodyear/ Group items tagged hemolysis

Rss Feed Group items tagged

Nathan Goodyear

Production of bilirubin with hemolysis | eClinpath - 0 views

  •  
    Good image of bilibrubin metabolism with hemolysis.
Nathan Goodyear

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a p... - 0 views

  • Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H2O2, and that blood can be a delivery system of the pro-drug to tissues.
  • These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H2O2 may be beneficial
  • pharmacologic concentrations of ascorbate killed cancer but not normal cells, that cell death was dependent only on extracellular but not intracellular ascorbate, and that killing was dependent on extracellular hydrogen peroxide (H2O2) formation with ascorbate radical as an intermediate
  • ...48 more annotations...
  • Our data show that ascorbic acid selectively killed cancer but not normal cells, using concentrations that could only be achieved by i.v. administration
  • Ascorbate-mediated cell death was due to protein-dependent extracellular H2O2 generation, via ascorbate radical formation from ascorbate as the electron donor. Like glucose, when ascorbate is infused i.v., the resulting pharmacologic concentrations should distribute rapidly in the extracellular water space (42). We showed that such pharmacologic ascorbate concentrations in media, as a surrogate for extracellular fluid, generated ascorbate radical and H2O2. In contrast, the same pharmacologic ascorbate concentrations in whole blood generated little detectable ascorbate radical and no detectable H2O2. These findings can be accounted for by efficient and redundant H2O2 catabolic pathways in whole blood (e.g., catalase and glutathione peroxidase) relative to those in media or extracellular fluid
  • ascorbic acid administered i.v. in pharmacologic concentrations may serve as a pro-drug for H2O2 delivery to the extracellular milieu
  • H2O2 generated in blood is normally removed by catalase and glutathione peroxidase within red blood cells, with internal glutathione providing reducing equivalents
  • The electron source for glutathione is NADPH from the pentose shunt, via glucose-6-phosphate dehydrogenase. If activity of this enzyme is diminished, the predicted outcome is impaired H2O2 removal causing intravascular hemolysis, the observed clinical finding.
    • Nathan Goodyear
       
      The mechansism here is inadequate recycling of GSH due to lack of G6PD, build up of intracellular H2O2 and RBC lysis--hemolysis.
  • Only recently has it been understood that the discordant clinical findings can be explained by previously unrecognized fundamental pharmacokinetics properties of ascorbate
  • Intracellular transport of ascorbate is tightly controlled in relation to extracellular concentration
  • Intravenous ascorbate infusion is expected to drastically change extracellular but not intracellular concentrations
  • For i.v. ascorbate to be clinically useful in killing cancer cells, pharmacologic but not physiologic extracellular concentrations should be effective, independent of intracellular ascorbate concentrations.
    • Nathan Goodyear
       
      accumulation of extracellular vitamin C is the effect.
  • It is unknown why ascorbate, via H2O2, killed some cancer cells but not normal cells.
  • There was no correlation with ascorbate-induced cell death and glutathione, catalase activity, or glutathione peroxidase activity.
  • H2O2, as the product of pharmacologic ascorbate concentrations, has potential therapeutic uses in addition to cancer treatment, especially in infections
  • Neutrophils generate H2O2 from superoxide,
  • i.v. ascorbate is effective in some viral infections
  • H2O2 is toxic to hepatitis C
  • Use of ascorbate as an H2O2-delivery system against sensitive pathogens, viral or bacterial, has substantial clinical implications that deserve rapid exploration.
  • Recent pharmacokinetics studies in men and women show that 10 g of ascorbate given i.v. is expected to produce plasma concentrations of nearly 6 mM, which are >25-fold higher than those concentrations from the same oral dose
  • As much as a 70-fold difference in plasma concentrations is expected between oral and i.v. administration,
  • Complementary and alternative medicine practitioners worldwide currently use ascorbate i.v. in some patients, in part because there is no apparent harm
  • Human Burkitt's lymphoma cells
  • We first investigated whether ascorbate in pharmacologic concentrations selectively affected the survival of cancer cells by studying nine cancer cell lines
  • Clinical pharmacokinetics analyses show that pharmacologic concentrations of plasma ascorbate, from 0.3 to 15 mM, are achievable only from i.v. administration
  • plasma ascorbate concentrations from maximum possible oral doses cannot exceed 0.22 mM because of limited intestinal absorption
  • For five of the nine cancer cell lines, ascorbate concentrations causing a 50% decrease in cell survival (EC50 values) were less than 5 mM, a concentration easily achievable from i.v. infusion
  • All tested normal cells were insensitive to 20 mM ascorbate.
    • Nathan Goodyear
       
      meaning safe.
  • Lymphoma cells were selected because of their sensitivity to ascorbate
  • As ascorbate concentration increased, the pattern of death changed from apoptosis to pyknosis/necrosis, a pattern suggestive of H2O2-mediated cell death
  • Apoptosis occurred by 6 h after exposure, and cell death by pyknosis was ≈90% at 14 h after exposure
    • Nathan Goodyear
       
      work continued beyond the IVC therapy itself
  • In contrast to lymphoma cells, there was little or no killing of normal lymphocytes and monocytes by ascorbate
  • Ascorbate is transported into cells as such by sodium-dependent transporters, whereas dehydroascorbic acid is transported into cells by glucose transporters and then immediately reduced internally to ascorbate
  • Whether or not intracellular ascorbate was preloaded, extracellular ascorbate induced the same amount and type of death.
  • extracellular ascorbate in pharmacologic concentrations mediates death of lymphoma cells by apoptosis and pyknosis/necrosis, independently of intracellular ascorbate.
  • H2O2 as the effector species mediating pharmacologic ascorbate-induced cell death
  • Superoxide dismutase was not protective
  • Because these data implicated H2O2 in cell killing, we added H2O2 to lymphoma cells and studied death patterns using nuclear staining (19, 28). The death patterns found with exogenous H2O2 exposure were similar to those found with ascorbate
  • For both ascorbate and H2O2, death changed from apoptosis to pyknosis/necrosis as concentrations increased
  • Sensitivity to direct exposure to H2O2 was greater in lymphoma cells compared with normal lymphocytes and normal monocytes
  • There was no association between the EC50 for ascorbate-mediated cell death and intracellular glutathione concentrations, catalase activity, or glutathione peroxidase activity
  • H2O2 generation was dependent on time, ascorbate concentration, and the presence of trace amounts of serum in media
  • ascorbate radical is a surrogate marker for H2O2 formation.
  • whatever H2O2 is generated should be removed by glutathione peroxidase and catalase within red blood cells, because H2O2 is membrane permeable
  • The data are consistent with the hypothesis that ascorbate in pharmacologic concentrations is a pro-drug for H2O2 generation in the extracellular milieu but not in blood.
  • The occurrence of one predicted complication, oxalate kidney stones, is controversial
  • In patients with glucose-6-phosphate dehydrogenase deficiency, i.v. ascorbate is contraindicated because it causes intravascular hemolysis
  • ascorbate at pharmacologic concentrations in blood is a pro-drug for H2O2 delivery to tissues.
  • ascorbate, an electron-donor in such reactions, ironically initiates pro-oxidant chemistry and H2O2 formation
  • data here showed that ascorbate initiated H2O2 formation extracellularly, but H2O2 targets could be either intracellular or extracellular, because H2O2 is membrane permeant
    • Nathan Goodyear
       
      the conversion of ascorbate to H2O2 occurs extracellular
  • More than 100 patients have been described, presumably without glucose-6-phosphate dehydrogenase deficiency, who received 10 g or more of i.v. ascorbate with no reported adverse effects other than tumor lysis
  •  
    IV vitamin C benefits cancer patients
Nathan Goodyear

ScienceDirect - Obstetrics & Gynecology : Low whole blood glutathione levels in pregnan... - 0 views

  •  
    glutathione low in pregnancies complicated by PIH and HELLP syndrome. Every woman should have her detoxification capacity evaluated prior to pregnancy.
Nathan Goodyear

Rare Occurrence of 3 "H": Hypercalcemia, Hemolytic Anemia and Hodgkin's Lymphoma - 0 views

  • administered zoledronic acid (4 mg). Prednisolone (1 mg/kg/day) was started and simultaneously, she was administered first cycle of ABVD (Adriamycin: 25 mg/m2, Bleomycin: 10 U/m2, Vinblastine: 6 mg/m2 and Dacarbazine: 375 mg/m2), which led to normalisation of serum calcium levels over 4 days and improvement in her hemoglobin levels
  • Etiology of anemia in Hodgkin’s lymphoma is multifactorial. Anemia of chronic disease, decreased red cell survival, infiltration of bone marrow by tumor and marrow suppression by chemotherapy/radiotherapy are the common mechanisms
  • Our case had only a transient response to steroids and chemotherapy. Therefore, she was treated with Rituximab which brought hemolysis under control
  • ...7 more annotations...
  • Hypercalcemia in HL is rare and its incidence has been reported as 0.9, 1.6 and 5.4 % in different series
  • Hypercalcemia of malignancy involves three mechanisms: 1. Humoral hypercalcemia mediated by PTHrP—seen in solid tumors like breast cancer and adult T cell leukemia/lymphoma (ATLL), 2. Direct osteoclast mediated bone resorption due to bony metastasis—seen in solid tumors and multiple myeloma, 3. Calcitriol mediated hypercalcemia—seen in Hodgkin’s and non-Hodgkin’s lymphoma as well as granulomatous disorders like tuberculosis, sarcoidosis, leprosy and disseminated Candidiasis
  • Mechanism of hypercalcemia in HL has long been suggested to involve extra-renal activation of 1α-hydroxylase leading to production of 1, 25(OD)2 Vitamin D3 or Calcitriol, an active metabolite of Vitamin D, which leads to increased re-absorption of calcium and phosphate from intestine, increased osteoclast activation and bone resorption as well as increased phosphate re-absorption in renal tubules
  • The source of 1α-hydroxylase in HL has been postulated as monocytes and macrophages infiltrating the tumor akin to tuberculosis or sarcoidosis and is stimulated by IFN-γ secreted by T-lymphocytes
  • Like sarcoidosis, patients with HL exhibit increased sensitivity to Vitamin D supplements and sunlight, which have been found to precipitate hypercalcemia in these patients
  • Classical biochemical profile in Calcitriol mediated hypercalcemia include: an elevated calcium, normal/slightly elevated phosphate, normal 25(OH) Vitamin D, suppressed PTHrP and PTH, elevated Calcitriol and a normal/increased tubular reabsorption of phosphate
  • not been associated with a poorer prognosis and tends to subside after treatment of the underlying disease
  •  
    great read on hypercalcemia in hodgkin's lymphoma.
Nathan Goodyear

Delayed-Onset Hemolytic Anemia in Patients with Travel-Associated Severe Malaria Treate... - 0 views

  • delayed hemolytic events occur in ≈20% of patients with severe imported malaria, and 60% of these patients require blood transfusion
  • Delayed-onset anemia (herein referred to as postartesunate delayed-onset hemolysis [PADH] pattern of anemia) has been observed to occur 2–3 weeks after initiation of IV artesunate
  • The mechanism of this anemia is hemolytic, as demonstrated by high serum lactate dehydrogenase (LDH) and low plasma haptoglobin levels
  • ...5 more annotations...
  • this side effect is associated with artesunate
  • PADH occurred in 27% of patients in this study, but it was rarely associated with severe anemia and was never fatal
  • median delayed drop in hemoglobin levels was 1.3 g/dL
  • This transfusion rate (<5%) is markedly lower than that previously reported for patients with severe imported malaria and delayed-onset anemia (≈60%)
  • Side effects of artesunate frequently include gastrointestinal disturbances, neutropenia (1.3%), reticulocytopenia (0.6%), and elevated liver enzymes (1.1%)
  •  
    artesunate
Nathan Goodyear

Intravenous Ascorbate as a Tumor Cytotoxic Chemotherapeutic Agent - 0 views

  • There is a 10 — 100-fold greater content of catalase in normal cells than in tumor cells
  • induce hydrogen peroxide generation
  • Ascorbic acid and its salts (AA) are preferentially toxic to tumor cells in vitro (6 — 13) and in vivo
  • ...36 more annotations...
  • related to intracellular hydrogen peroxide generation
  • only be obtained by intravenous administration of AA
  • Preferentially kills neoplastic cells
  • Is virtually non-toxic at any dosage
  • Does not suppress the immune system, unlike most chemotherapy agents
  • Increases animal and human resistance to infectious agents by enhancing lymphocyte blastogenesis, enhancing cellular immunity, strengthening the extracellular matrix, and enhancing bactericidal activity of neutrophils and modulation of complement protein
  • Strengthens the structural integrity of the extracellular matrix which is responsible for stromal resistance to malignant invasiveness
  • 1969, researchers at the NCI reported AA was highly toxic to Ehrlich ascites cells in vitro
  • In 1977, Bram et al reported preferential AA toxicity for several malignant melanoma cell lines, including four human-derived lines
  • Noto et al reported that AA plus vitamin K3 had growth inhibiting action against three human tumor cell lines at non-toxic levels
  • Metabolites of AA have also shown antitumor activity in vitro
  • The AA begins to reduce cell proliferation in the tumor cell line at the lowest concentration, 1.76 mg/dl, and is completely cytotoxic to the cells at 7.04 mg/dl
  • the normal cells grew at an enhanced rate at the low dosages (1.76 and 3.52 mg/dl)
  • preferential toxicity of AA for tumor cells. >95% toxicity to human endometrial adenocarcinoma and pancreatic tumor cells (ATCC AN3-CA and MIA PaCa-2) occurred at 20 and 30 mg/dl, respectively.
  • No toxicity or inhibition was demonstrated in the normal, human skin fibroblasts (ATCC CCD 25SK) even at the highest concentration of 50 mg/dl.
  • the use of very high-dose intravenous AA for the treatment of cancer was proposed as early as 1971
  • Cameron and Pauling have published extensive suggestive evidence for prolonged life in terminal cancer patients orally supplemented (with and without initial intravenous AA therapy) with 10 g/day of AA
  • AA, plasma levels during infusion were not monitored,
  • the long-term, oral dosage used in those experiments (10 g/day), while substantial and capable of producing immunostimulatory and extracellular matrix modulation effects, was not high enough to achieve plasma concentrations that are generally cytotoxic to tumor cells in culture
  • This low cytotoxic level of AA is exceedingly rare
  • 5 — 40 mg/dl of AA is required in vitro to kill 100% of tumor cells within 3 days. The 100% kill levels of 30 mg/dl for the endometrial carcinoma cells and 40 mg/dl for the pancreatic carcinoma cells in Figure 2 are typical
  • normal range (95% range) of 0.39-1.13 mg/dl
  • 1 h after beginning his first 8-h infusion of 115 g AA (Merit Pharmaceuticals, Los Angeles, CA), the plasma AA was 3.7 mg/dl and at 5 h was 19 mg/dl. During his fourth 8-h infusion, 8 days later, the 1 h plasma level was 158 mg/dl and 5 h was 185 mg/dl
  • plasma levels of over 100 mg/dl have been maintained in 3 patients for more than 5 h using continuous intravenous infusion
  • In rare instances of patients with widely disseminated and rapidly proliferating tumors, intravenous AA administration (10 — 45 g/day) precipitated widespread tumor hemorrhage and necrosis, resulting in death
  • Although the outcomes were disastrous in these cases, they are similar to the description of tumor-necrosis-factor-induced hemorrhage and necrosis in mice (52) and seem to demonstrate the ability of AA to kill tumor cells in vivo.
  • toxic effects of AA on one normal cell line were observed at 58.36 mg/dl and the lack of side effects in patients maintaining >100 mg/dl plasma levels
  • Although it is very rare, tumor necrosis, hemorrhage, and subsequent death should be the highest priority concern for the safety of intravenous AA for cancer patients.
  • Klenner, who reported no ill effects of dosages as high as 150 g intravenously over a 24-h period
  • Cathcart (55) who describes no ill effects with doses of up to 200 g/d in patients with various pathological conditions
  • following circumstances: renal insufficiency, chronic hemodialysis patients, unusual forms of iron overload, and oxalate stone formers
  • Screening for red cell glucose-6-phosphate dehydrogenase deficiency, which can give rise to hemolysis of red blood cells under oxidative stress (57), should also be performed
  • any cancer therapy should be started at a low dosage to ensure that tumor hemorrhage does not occur.
  • patient is orally supplementing between infusions
  • a scorbutic rebound effect can be avoided with oral supplementation. Because of the possibility of a rebound effect, measurement of plasma levels during the periods between infusions should be performed to ensure that no such effect takes place
  • Every effort should be made to monitor plasma AA levels when a patient discontinues intravenous AA therapy.
  •  
    Older study, 1995, but shows the long-standing evidence that IVC preferentially is cytotoxic to cancer cells.`
Nathan Goodyear

Intravenously administered vitamin C as cancer therapy: three cases - 0 views

  • peak plasma concentrations obtained intravenously are estimated to reach 14 000 μmol/L, and concentrations above 2000 μmol/L may persist for several hours
  • Emerging in vitro data show that extracellular ascorbic acid selectively kills some cancer but no normal cells by generating hydrogen peroxide
  • Death is mediated exclusively by extracellular ascorbate, at pharmacologic concentrations that can be achieved only by intravenous administration
  • ...6 more annotations...
  • Vitamin C may serve as a pro-drug for hydrogen peroxide delivery to extravascular tissues, but without the presence of hydrogen peroxide in blood
  • not all cancer cells were killed by ascorbic acid in vitro
  • Intravascular hemolysis was reported after massive vitamin C administration in people with glucose-6-phosphate dehydrogenase deficiency
  • Administration of high-dose vitamin C to patients with systemic iron overload may increase iron absorption and represents a contraindication
  • Ascorbic acid is metabolized to oxalate, and 2 cases of acute oxalate nephropathy were reported in patients with pre-existing renal insufficiency given massive intravenous doses of vitamin C
  • Rare cases of acute tumour hemorrhage and necrosis were reported in patients with advanced cancer within a few days of starting high-dose intravenous vitamin C therapy, although this was not independently verified by pathologic review
  •  
    IV vitamin C associated with prolonged survival in 3 patients with different cancers.  Peak serum levels reached 14,000 micromol/L, which levels above the 1,000 micro mol/L (cancer cell cytotoxic threshold) were maintained for hours
1 - 8 of 8
Showing 20 items per page