Skip to main content

Home/ Dr. Goodyear/ Group items tagged Bcl-2

Rss Feed Group items tagged

Nathan Goodyear

Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxyge... - 0 views

  •  
    quercetin down-regulated the expression of anti-apoptosis protein Bcl-2 and up-regulated the expression of pro-apoptosis protein Bax. Caspase-3 was also activated by quercetin, which started a caspase-3-depended mitochodrial pathway to induce apoptosis. It was also found that quercetin inhibited the expression of the cycloocygenase-2
Nathan Goodyear

BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent... - 0 views

  •  
    Leukemia stem cells use oxidative phosphorylation metabolism via upregulation of bcl-2 gene.
Nathan Goodyear

Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate canc... - 0 views

  •  
    DCA inhibits bcl to promote apoptosis and inhabit prostate cancer cell growth.
Nathan Goodyear

Progesterone metabolites regulate induction, growth, and suppression of estrogen- and p... - 0 views

  • in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines
  • Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP
  • When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa
  • ...31 more annotations...
  • Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors
  • Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions
  • The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress
  • hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions.
  • a large proportion (about 30% to 60%) of breast tumors are ER and/or PR negative
  • about 90% of normal proliferating breast epithelial cells are receptor negative
  • Our previous in vitro studies had shown that breast tissues and cell lines readily convert progesterone to 5α-pregnanes, such as 5αP, and delta-4-pregnenes, such as 3αHP (Figure ​(Figure1),1), and that tumorous breast tissues [15] and tumorigenic breast cell lines [16] produce higher levels of 5αP and lower levels of 3αHP than do normal breast tissues and nontumorigenic cell lines
  • The progesterone metabolism studies suggested that increases in 5αP and decreases in 3αHP production accompany the shift toward breast cell neoplasia and tumorigenicity
  • In vitro studies on five different human breast cell lines showed that cell proliferation and detachment are significantly increased by 5αP and decreased by 3αHP
  • the prevailing theory of hormonal regulation of breast cancer, as well as hormone-based therapies, revolves around estrogen and/or progesterone and ER/PR-positive breast cells and tumors.
  • Not only do these "receptor-negative" breast cancers fail to benefit from current hormonal therapies, but they also generally exhibit more-aggressive biologic behaviors and poorer prognosis than the receptor-positive ones
  • The results of the studies reported here show for the first time that the progesterone metabolites, 5αP and 3αHP, act as hormones that regulate ER/PR-negative breast tumor formation, growth, and regression
  • The onset of the ER/PR-negative human breast cell tumors in mice was considerably accelerated, and the growth significantly stimulated, by just one or two applications of 5αP
  • In contrast, 3αHP retarded onset of tumor formation, suppressed tumor growth, and inhibited or regressed existing 5αP-induced tumors
  • When both hormones were administered simultaneously, the effects of one were abrogated by the effects of the other.
  • The 5αPR and 3αHPR (which are associated with the plasma membranes of both ER/PR-positive [19] and ER/PR-negative [29] cells) are distinct from each other and from known ER, PR, androgen, and corticosteroid receptors, and lack affinity for other steroids, such as progesterone, estrogen, androgens, corticosteroids, and other progesterone metabolites
  • Levels of 5αPR are upregulated by 5αP itself and estradiol, and downregulated by 3αHP in both ER/PR-positive and -negative cells
  • ndications are that 5αP acts via the surface receptor-linked mitogen-activated protein kinase (MAPK; Erk1/2) pathway; 5αP significantly stimulates activation of Erk1/2 [30], increases the Bcl-2/Bax expression ratio [18] and actin depolymerization [31], and decreases expression of actin and adhesion plaque-associated vinculin [31], resulting in decreased apoptosis and increased mitosis and cell detachment
  • 3αHP appears to suppress protein kinase C (PKC), phospholipase C (PLC), Ca2+ mobilization (unpublished observations), and the Bcl-2/Bax expression ratio [18], and increases expression of the cell-cycle inhibitor p21 [18], resulting in increased apoptosis and decreased proliferation and detachment of breast cell lines.
  • serum from mice with tumors had significantly more 5αP than 3αHP
  • the tumors, which on average had about threefold higher concentrations of 5αP than the respective sera, and >10-fold higher 5αP than 3αHP levels
  • Previous in vitro metabolism studies showed that human breast tumor tissues convert significantly more progesterone to 5α-pregnanes like 5αP and less to 4-pregnenes like 3αHP than do paired normal (nontumorous) tissues
  • Similar differences in progesterone metabolism and enzyme gene expressions were observed between tumorigenic and nontumorigenic breast cell lines
  • breast carcinomas are able to synthesize progesterone
  • The current findings, along with the previous in vitro studies, suggest that the relative concentrations of 5αP and 3αHP in the breast microenvironment constitute important autocrine/paracrine determinants not only for tumorigenesis but also for potential regression of tumors and the maintenance of normalcy of ER/PR-negative breast cells/tissues.
  • Evidence presented here shows that a high concentration of 5αP, relative to 3αHP in the microenvironment, promotes initiation and growth of tumors, whereas a higher concentration of 3αHP, relative to 5αP, suppresses tumorigenesis and promotes normalcy
  • 5α-reductase and 5αPR levels are upregulated by 5αP
  • in the 3αHP-treated mice, the elevated 3αHP levels, relative to 5αP, in the microenvironment could have opposed progression to xenograft neoplasia by its inherent anticancer actions and the suppression of 5αP synthesis and 5αPR expression
  • the opposing actions of the progesterone metabolites also appear to exert some control over the estrogen-regulated effects on breast cancer by their ability to modulate ER numbers in ER-positive cells
  • because both ER/PR-negative and ER/PR-positive, as well as normal and tumorigenic human breast cell lines, have been shown to respond to 5αP and 3αHP in vitro, it is suggested that these endogenously produced progesterone metabolites may also play regulatory hormonal roles in ER/PR-positive breast cancers, as well as in the maintenance of normalcy in nontumorous breast tissues.
  • The in vivo data provide further evidence that progesterone metabolites, such as 5αP and 3αHP, deserve to be considered as active hormones in their own right, rather than inactive waste products
  •  
    Progesterone metabolites and breast cancer
Nathan Goodyear

Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on g... - 0 views

  • Cisplatin and 5-FU or CAP (cisplatin, doxorubicin, and cyclophosphamide) regimens can be used for combination chemotherapy
  • patients with advanced salivary gland malignancy treated with the CAP regimen achieved partial response (PR) or stable disease (SD) rates of 67% (8 out of 12 patients)
  • Agents commonly given as monotherapy for treating ACC are cisplatin, mitoxantrone, epirubicin, vinorelbine, paclitaxel, and gemcitabine. However, few of these agents have shown efficacy
  • ...23 more annotations...
  • single agent mitoxantrone or vinorelbine were recommended as reasonable choices
  • ACC is subdivided into 3 histological groups based on solid components of the tumor including cribriform, tubular, and solid
  • Cribriform and tubular ACCs usually exhibit a more indolent course, whereas the solid subtype is associated with worse prognosis
  • ACC consists of two different cell types: inner luminal epithelial cells and outer myoepithelial cells
  • epithelial cells express c-kit, cox-2 and Bcl-2
  • myoepithelial cells express EGFR and MYB
  • a balanced translocation of the v-myb avian myeloblastosis viral oncogene homolog-nuclear factor I/B (MYB-NFIB) is considered to be a signature molecular event of ACC oncogenesis
  • As a transcription factor, MYB is known to modulate multiple genetic downstream targets involved in oncogenesis, such as cox-2, c-kit, Bcl-2 and BclX
  • Various signaling cascades are essential for cancer cells to survive and grow. The PI3K/Akt/mTOR pathway is one of them
  • This pathway regulates cell survival and growth and is upregulated in many cancers
  • Mutations in genes associated with DNA repair are frequently found in familial cancer syndromes, such as hereditary breast-ovarian cancer syndrome (HBOC), hereditary non-polyposis colorectal cancer (HNPCC, also called Lynch syndrome) and Li-Fraumeni syndrome [30, 31]. These mutations were also reported in non-hereditary cancers
  • 70% of ACC samples (58 of 84) were found to have genetic alterations in the MYB/MYC pathway, indicating that changes in this pathway are crucial in ACC pathogenesis
  • The second most frequently mutated pathway was involved in chromatin remodeling (epigenetic modification), a pathway that includes multiple histone related proteins, and was altered in 44% of samples
  • C-kit
  • VEGF, iNOS and NF-κB were noted to be highly expressed in ACC cells as compared to normal salivary gland cells
  • members of the SOX family, such as SOX 4 and SOX10, are overexpressed in ACC
  • FABP7 (Fatty acid binding protein 7) and AQP1 (Aquaporin 1) tend to be overexpressed in ACC cell lines
  • considerable variability in HER2 overexpression ranging from 0–58% in patients with ACC
  • the study with cetuximab and concurrent chemoradiation or chemotherapy showed the highest ORR (total 43%, 9.5% CR and 33% PR), but this regimen was only given to the EGFR positive patients
  • Cancer immunotherapy can be classified into 3 major groups. Active immunization using anti-tumor vaccines to induce and recruit T cells, passive immunization based on monoclonal antibodies, and adoptive cell transfer to expand tumor-reactive autologous T cells ex vivo and then reintroduce these cells into the same individual
  • LAK cells showed cytotoxicity against ACC cells
  • cytokine-induced cell apoptosis and the cytotoxic effect of the LAK cells contributed to tumor regression
  • molecular finding of the MYB-NFIB fusion gene has the greatest potential to target what appears to be a fundamental event in disease pathogenesis
  •  
    good review of adenoid cystic carcinoma
Nathan Goodyear

Effect of artesunate on apoptosis and autophagy in tamoxifen resistant breast cancer ce... - 0 views

  •  
    Artesunate effective in Tamoxifen resistant breast cancer cells lines via reduction in Bcl-2, survivin, and increase in Caspase-7.
Nathan Goodyear

How is the Immune System Suppressed by Cancer - 1 views

  • nitric oxide (NO) released by tumor cells
  • Excellent work by Prof de Groot of Essen, indicated by adding exogenous xanthine oxidase ( XO) in hepatoma cells, hydrogen peroxide was produced to destroy the hepatoma cells
  • NO from eNOS in cancer cells can travel through membranes and over long distances in the body
  • ...43 more annotations...
  • NO also is co linked to VEGF which in turn increases the antiapoptotic gene bcl-2
  • The other important influence of NO is in its inhibition of the proapoptoic caspases cascade. This in turn protects the cells from intracellular preprogrammed death.
  • nitric oxide in immune suppression in relation to oxygen radicals is its inhibitory effect on the binding of leukocytes (PMN) at the endothelial surface
  • Inhibition of inducible Nitric Oxide Synthase (iNOS)
  • NO from the tumor cells actually suppresses the iNOS, and in addition it reduces oxygen radicals to stop the formation of peroxynitrite in these cells. But NO is not the only inhibitor of iNOS in cancer.
  • Spermine and spermidine, from the rate limiting enzyme for DNA synthases, ODC, also inhibit iNOS
  • tolerance in the immune system that decreases the immune response to antigens on the tumors
  • Freund’s adjuvant
  • increase in kinases in these cells which phosphorylate serine, and tyrosine
  • responsible for activation of many growth factors and enzymes
  • phosphorylated amino acids suppress iNOS activity
  • Hexokinase II
  • Prostaglandin E2, released from tumor cells is also an inhibitor of iNOS, as well as suppressing the immune system
  • Th-1 subset of T-cells. These cells are responsible for anti-viral and anti-cancer activities, via their cytokine production including Interleukin-2, (IL-2), and Interleukin-12 which stimulates T-killer cell replication and further activation and release of tumor fighting cytokines.
    • Nathan Goodyear
       
      Th1 cells stimulate NK and other tumor fighting macrophages via IL-2 and IL-12; In contrast, Th2, which is stimulated in allergies and parasitic infections, produce IL-4 and IL-10.  IL-4 and IL-10 inhibit TH-1 activation and the histamine released from mast cell degranulation upregulates T suppressor cells to further immune suppression.
  • Th-2 subset of lymphocytes, on the other hand are activated in allergies and parasitic infections to release Interleukin-4 and Interleukin-10
  • These have respectively inhibitory effects on iNOS and lymphocyte Th-1 activation
  • Mast cells contain histamine which when released increases the T suppressor cells, to lower the immune system and also acts directly on many tumor Histamine receptors to stimulate tumor growth
  • Tumor cells release IL-10, and this is thought to be one of the important areas of Th-1 suppression in cancer patients
  • IL-10 is also increased in cancer causing viral diseases such as HIV, HBV, HCV, and EBV
  • IL-10 is also a central regulator of cyclooxygenase-2 expression and prostaglandin production in tumor cells stimulating their angiogenesis and NO production
  • nitric oxide in tumor cells even prevents the activation of caspases responsible for apoptosis
    • Nathan Goodyear
       
      NO produced by cancer cells inhibits proapoptotic pathways such as the caspases.
  • early stages of carcinogenesis, which we call tumor promotion, one needs a strong immune system, and fewer oxygen radicals to prevent mutations but still enough to destroy the tumor cells should they develop
  • later stages of cancer development, the oxygen radicals are decreased around the tumors and in the tumor cells themselves, and the entire cancer fighting Th-1 cell replication and movement are suppressed. The results are a decrease in direct toxicity and apoptosis, which is prevented by NO, a suppression of the macrophage and leukocyte toxicity and finally, a suppression of the T-cell induced tumor toxicity
  • cGMP is increased by NO
  • NO in cancer is its ability to increase platelet-tumor cell aggregates, which enhances metastases
  • the greater the malignancies and the greater the metastatic potential of these tumors
  • The greater the NO production in many types of tumors,
  • gynecological
  • elevated lactic acid which neutralizes the toxicity and activity of Lymphocyte immune response and mobility
  • The lactic acid is also feeding fungi around tumors and that leads to elevated histamine which increases T-suppressor cells.  Histamine alone stimulates many tumor cells.
    • Nathan Goodyear
       
      The warburg effect in cancer cells results in the increase in local lactic acid production which suppresses lymphocyte activity and toxicity as well as stimulates histamine production with further stimulates tumor cell growth.
  • T-regulatory cells (formerly,T suppressor cells) down regulate the activity of Natural killer cells
  • last but not least, the Lactic acid from tumor cells and acidic diets shifts the lymphocyte activity to reduce its efficacy against cancer cells and pathogens in addition to altering the bacteria of the intestinal tract.
  • intestinal tract bacteria in cancer cells release sterols that suppress the immune system and down regulate anticancer activity from lymphocytes.
  • In addition to the lactic acid, adenosine is also released from tumors. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state
  • Adenosine up regulates the PD1 receptor in T-1 Lymphocytes and inhibits their activity
  • Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells
  • Adenosine appears to up-regulate the PD1 receptor in T-1 Lymphocytes and inhibits the immune system further
  • Mast cells with their release of histamine lower the immune system and also stimulate tumor growth and activate the metalloproteinases involved in angiogenesis and metastases
  • COX 2 inhibitors or all trans-retinoic acid
  • Cimetidine, an antihistamine has been actually shown to increase in apoptosis in MDSC via a separate mechanism than the antihistamine effect
    • Nathan Goodyear
       
      cimetidine is an H2 blocker
  • interleukin-8 (IL-8), a chemokine related to invasion and angiogenesis
  • In vitro analyses revealed a striking induction of IL-8 expression in CAFs and LFs by tumor necrosis factor-alpha (TNF-alpha)
  • these data raise the possibility that the majority of CAFs in CLM originate from resident LFs. TNF-alpha-induced up-regulation of IL-8 via nuclear factor-kappaB in CAFs is an inflammatory pathway, potentially permissive for cancer invasion that may represent a novel therapeutic target
  •  
    Great review of the immunosuppression in cancer driven by the likes of NO.
Nathan Goodyear

Repurposing Drugs in Oncology (ReDO)-chloroquine and hydroxychloroquine as anti-cancer ... - 0 views

  • HCQ, doses for long-term use range between 200 and 400 mg per day.
  • Short-term administration of CQ or HCQ rarely causes severe side effects
  • Short-term administration of CQ or HCQ rarely causes severe side effects
  • ...24 more annotations...
  • bone marrow suppression
  • cardiomyopathy
  • irreversible retinal toxicity
  • hypoglycaemia
  • daily doses up to 400 mg of HCQ or 250 mg CQ for several years are considered to carry an acceptable risk for CQ-induced retinopathies, with the exception of individuals of short stature
  • chronic CQ or HCQ therapy be monitored through regular ophthalmic examinations (3–6 month intervals), full blood counts and blood glucose level checks
  • long-term HCQ exposure, skeletal muscle function and tendon reflexes should be monitored for weakness
  • both CQ and HCQ, specific caution is advised in patients suffering from impaired hepatic function (especially when associated with cirrhosis), porphyria, renal disease, epilepsy, psoriasis, glucose-6-phosphate dehydrogenase deficiency and known hypersensitivity to 4-aminoquinoline compounds
  • CQ and HCQ can effectively increase the efficacy of various anti-cancer drugs
  • CQ can prevent the entrapment of protonated chemotherapeutic drugs by buffering the extracellular tumour environment and intracellular acidic spaces
  • This study recommends an adjuvant HCQ dose of 600 mg, twice daily.
  • HCQ addition was shown to produce metabolic stress in the tumours
  • HCQ (400 mg/day)
  • important effects of CQ and HCQ on the tumour microenvironment
  • The main and most studied anti-cancer effect of CQ and HCQ is the inhibition of autophagy
  • the expression levels of TLR9 are higher in hepatocellular carcinoma, oesophageal, lung, breast, gastric and prostate cancer cells as compared with adjacent noncancerous cells, and high expression is often linked with poor prognosis
  • TLR9-mediated activation of the NF-κB signalling pathway and the associated enhanced expression of matrix metalloproteinase-2 (MMP-2), MMP-7 and cyclo-oxygenase 2 mRNA
  • HCQ can activate caspase-3 and modulate the Bcl-2/Bax ratio inducing apoptosis in CLL, B-cell CLL and glioblastoma cells
  • In triple-negative breast cancer, CQ was shown to eliminate cancer stem cells through reduction of the expression of Janus-activated kinase 2 and DNA methyl transferase 1 [106] or through induction of mitochondrial dysfunction, subsequently causing oxidative DNA damage and impaired repair of double-stranded DNA breaks
  • CQ or HCQ would be considered for use in combination with immunomodulation anti-cancer therapies
  • Therapies used in combination with CQ or HCQ include chemotherapeutic drugs, tyrosine kinase inhibitors, various monoclonal antibodies, hormone therapies and radiotherapy
  • Most studies hypothesise that CQ and HCQ could increase the efficacy of other anti-cancer drugs by blocking pro-survival autophagy.
  • daily doses between 400 and 1200 mg for HCQ are safe and well tolerated, but two studies identified 600-mg HCQ daily as the MTD
  • HCQ is often administered twice daily to limit plasma fluctuations and toxicity
Nathan Goodyear

Ascorbic Acid Chemosensitizes Colorectal Cancer Cells and Synergistically Inhibits Tumo... - 0 views

  • therapeutic potential has been supported by a large and consistent body of evidences from in vitro
  • Ascorbic acid might act as a way to deliver hydrogen peroxide (H2O2) to the tissues
  • pharmacological concentrations of AA were capable of inducing anti-proliferative, cytotoxic and genotoxic effects
  • ...12 more annotations...
  • chemosensitizing
  • pharmacological concentrations of AA can sensitize cancer cells to chemotherapy, enhancing its antineoplastic effect
  • synergistic effect with conventional chemotherapeutic drugs is a fact already reported, in various types of cancer, by numerous authors, namely in pancreatic (Espey et al., 2011), prostate (Gilloteaux et al., 2014), lung (Lee et al., 2017), breast (Kurbacher et al., 1996; Wu et al., 2017) and ovarian (Ma et al., 2014) cancers.
  • chemosensitizing effect of vitamin C has already been proven by several authors in various types of cancer
  • intravenous pharmacological concentrations, may not only potentiate the effects of conventional chemotherapy, but also improve the quality of life of cancer patients
  • AA reinforced the anti-proliferative activity of 5-FU
  • Combined treatment induced a reduction of 11.5% and 43% in cell viability compared with AA or Iri therapies, respectively, emphasizing the synergistic effect
  • cytotoxic effect occurred with treatment with Iri alone, but also this effect was further potentiated by the presence of AA.
  • association of AA with Oxa showed very promising results, considering that a synergistic effect was demonstrated, in almost all conditions
  • AA and Oxa seem to act synergistically by the activation of the intrinsic pathway of apoptosis, translated on the statistically significant increase of the ratio between BAX and BCL-2 proteins, which in turn is associated with a decrease of Δψm
    • Nathan Goodyear
       
      Apoptosis -> decrease in mitochondrial membrane potential
  • Previous results obtained by our group showed that AA mediates reactive oxygen species (ROS) formation capable of irreparably damaging DNA
  • oxidative role of AA may be a key factor on the synergistic anti-cancer mechanism
Nathan Goodyear

Artesunate inhibits the growth and induces apoptosis of human gastric | OTT - 0 views

  •  
    Wide spectrum of anti-cancer properties of artesunate
Nathan Goodyear

Opposing actions of the progesterone metabolites, 5α-dihydroprogesterone (5αP... - 0 views

  •  
    Progesterone metabolites play key role in breast cancer carcinogenesis or inhibition of carcinogenesis.  The key active progesterone metabolites discussed in this article are 5 alpha pregnene and 3 alpha hydroxyprogesterone.
Nathan Goodyear

Malondialdehyde, Bcl-2, superoxide dismutase a... [Neurochem Res. 2012] - PubMed - NCBI - 0 views

  •  
    decreased detoxification and increased oxidative stress in autism.
Nathan Goodyear

Curcumin Prevents Tumor-induced T Cell Apoptosis through Stat-5a-mediated Bcl-2 Induction - 0 views

  • ese results raise the possibility of inclusion of curcumin in successful therapeutic regimens against cancer
  •  
    curcumin should be used in any cancer treatment regimens
1 - 17 of 17
Showing 20 items per page