Skip to main content

Home/ Groups/ COSEE-West
Gwen Noda

If the Earth Stood Still - What Would Happen if the Earth Stopped Spinning? - 0 views

  •  
    The following is not a futuristic scenario. It is not science fiction. It is a demonstration of the capabilities of GIS to model the results of an extremely unlikely, yet intellectually fascinating query: What would happen if the earth stopped spinning? ArcGIS was used to perform complex raster analysis and volumetric computations and generate maps that visualize these results.
Gwen Noda

ClimateWatch Magazine » The New Climate Normals: Gardeners Expect Warmer Nights - 0 views

  •  
    Defining normal Gardeners, meteorologists, businesses, weather junkies and others will get answers to some of these questions in July, when NOAA's National Climatic Data Center (NCDC) releases the latest version of an official weather product called the U.S. Climate Normals. Updated each decade, the U.S. Climate Normals are 30-year averages of many pieces of weather information collected from thousands of weather stations nationwide. Each time they are updated, an old decade is dropped, and a new one added. Starting in July, when you hear that a day was hotter, or colder, or rainier than normal, that "normal" will be a little different from what it was in the past.
Gwen Noda

Home | Plankton Chronicles - 0 views

  •  
    Tara Oceans CNRS Para Films Observatoire Oceanologique de Villefranche sur Mer UPMC Paris Universitas BioClips IBiSA
Gwen Noda

Understanding Ocean Acidification - 0 views

  •  
    Our carbon emissions are making the ocean more acidic, which threatens life in our seas. Use these resources to educate yourself and others and take action.
Gwen Noda

The Yale Forum on Climate Change & The Media » Covering Ocean Acidification: ... - 0 views

  •  
    Covering Ocean Acidification: Chemistry and Considerations Marah Hardt and Carl Safina June 24, 2008 Changing ocean chemistry threatens the survival of marine life as much as warming temperatures. Understanding the basic chemistry of ocean acidification and the relevant consequences for people and wildlife are keys to effective journalism on an issue of growing importance and interest to media audiences.
Gwen Noda

Science On a Sphere - 0 views

  •  
    Science On a Sphere Well-crafted visualizations provide unique and powerful teaching tools Science On a Sphere® is a large visualization system that uses computers and video projectors to display animated data onto the outside of a sphere. Researchers at NOAA developed Science On a Sphere® as an educational tool to help illustrate Earth System science to people of all ages. Animated images of complex processes such as ocean currents, sea level rise, and ocean acidification are used to to enhance the public's understanding of our dynamic environment. Ocean Acidification on Science On a Sphere® The movies below were developed for use on Science On a Sphere® and show computer model simulations of surface ocean pH and carbonate mineral saturation state for the years 1895 to 2094. The first movie shows a computer recreation of surface ocean pH from 1895 to the present, and it forecasts how ocean pH will drop even more between now and 2094. Dark gray dots show cold-water coral reefs. Medium gray dots show warm-water coral reefs. You can see that ocean acidification was slow at the beginning of the movie, but it speeds up as time goes on. This is because humans are releasing carbon dioxide faster than the atmosphere-ocean system can handle.
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

Coral Reefs and Climate Change - How does climate change affect coral reefs - Cosee Coa... - 0 views

  •  
    How does climate change affect coral reefs? The warmer air and ocean surface temperatures brought on by climate change impact corals and alter coral reef communities by prompting coral bleaching events and altering ocean chemistry. These impacts affect corals and the many organisms that use coral reefs as habitat.
Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

Scientists name world's most important marine conservation hotspots | Environment | gua... - 0 views

  •  
    Scientists have identified the 20 most important regions of the world's oceans and lakes that are key to ensuring the survival of the planet's marine mammals such as seals and porpoises. Their analysis also shows, however, that most of these areas are already under pressure from human impacts such as pollution and shipping.
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
Gwen Noda

NOAA | Uncharted Atolls - 0 views

  •  
    Tsunami in the Pacific: wave height and propagation models
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 0 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification. Download A plague in air and sea: Neutralizing the acid of progress"
Gwen Noda

Guide to best practices for ocean acidification research and data reporting »... - 0 views

  •  
    1 The carbon dioxide system in seawater: equilibrium chemistry and measurements 1.1 Introduction 1.2 Basic chemistry of carbon dioxide in seawater 1.3 The definition and measurement of pH in seawater 1.4 Implications of other acid-base equilibria in seawater on seawater alkalinity 1.5 Choosing the appropriate measurement techniques 1.6 Conclusions and recommendations 2 Approaches and tools to manipulate the carbonate chemistry 3 Atmospheric CO2 targets for ocean acidification perturbation experiments 4 Designing ocean acidification experiments to maximise inference 5 Bioassays, batch culture and chemostat experimentation 6 Pelagic mesocosms 7 Laboratory experiments and benthic mesocosm studies 8 In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p(CO2) perturbations 9 Studies of acid-base status and regulation 9.1 Introduction 9.2 Fundamentals of acid-base regulation 9.3 Measurement of pH, total CO2 and non-bicarbonate buffer values 9.4 Compartmental measurements: towards a quantitative picture 9.5 Overall suggestions for improvements 10 Studies of metabolic rate and other characters across life stages 10.1 Introduction 10.2 Definition of a frame of reference: studying specific characters across life stages 10.3 Approaches and methodologies: metabolic studies 10.4 Study of early life stages 10.5 Techniques for oxygen analyses 10.6 Overall suggestions for improvements 10.7 Data reporting 10.8 Recommendations for standards and guidelines 11 Production and export of organic matter 12 Direct measurements of calcification rates in planktonic organisms 13 Measurements of calcification and dissolution of benthic organisms and communities 14 Modelling considerations 15 Safeguarding and sharing ocean acidification data 15.1 Introduction 15.2 Sharing ocean acidification data 15.3 Safeguarding ocean acidification data 15.4 Harmonising ocean acidification data and metadata 15.5 Disseminating ocean
Gwen Noda

Study assesses nations' vulnerabilities to reduced mollusk harvests from ocean acidific... - 0 views

  •  
    "Study assesses nations' vulnerabilities to reduced mollusk harvests from ocean acidification August 2, 2011 Changes in ocean chemistry due to increased carbon dioxide (CO2) emissions are expected to damage shellfish populations around the world, but some nations will feel the impacts much sooner and more intensely than others, according to a study by scientists at Woods Hole Oceanographic Institution (WHOI)."
Gwen Noda

Ocean Acification Simulation - Interactive Earth - natural history education, website d... - 0 views

  •  
    Ocean Acification Simulation Ocean AcidificationI developed this Carbonate Simulation to enables students and teachers to visualize how changes in atmospheric temperature and carbon dioxide concentrations may affect levels of carbon dioxide levels and related chemistry of the oceans. The applet uses coral reefs as an example of organisms that may be particularly affected by these changes in water chemistry.
Gwen Noda

Institute for Global Environmental Strategies >> || Courses || Learners in CEE CSE 594:... - 0 views

  •  
    Earth System Science Education Alliance course
Gwen Noda

Live Dive | Ocean and Climate Change - 0 views

  •  
    Learn about the chemistry and biology behind our world's changing oceans, how humans are affecting our oceans, and what we can do to change it. See how increased carbon dioxide levels are changing ocean chemistry, and link chemistry to biology by examining the impacts of ocean acidification on marine organisms.
Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

Governments refusal to address ocean acidification. - Sacramento Political Buzz | Exami... - 0 views

  •  
    Global warming…the Earth is steadily getting warmer. The why is it getting warmer question will solicit so many theories that it would drive one mad to sort through them all. Global warming itself is sort of a misnomer; it is a symptom of the problem, not the cause. The cause for all the debate is whether or not the atmospheric increase of CO2 gas over the last two-hundred years has affected the Earth's climate. Recently scientists have discovered another reason to be concerned about the increasing level of atmospheric CO2. It is startling that the media and science has hardly touched upon ocean acidification. It would not be surprising if you have never heard this term. A LexisNexis search of the news wire services found in the past week there were 348 articles that mentioned global warming. Three articles contained ocean acidification. In the last 2 years, a LexisNexis search of all sources found a mere 216 articles that mentioned ocean acidification. That is a worldwide search of newspapers, magazines and wire services. The New York Times did not mention it a single time, but they ran so many Global Warming articles that there were too many matches for the page to display.
« First ‹ Previous 241 - 260 Next › Last »
Showing 20 items per page