Skip to main content

Home/ COSEE-West/ Group items tagged sediment

Rss Feed Group items tagged

Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
Gwen Noda

Rebuilding Wetlands by Managing the Muddy Mississippi - 0 views

  •  
    Science 3 February 2012: Vol. 335 no. 6068 pp. 520-521 DOI: 10.1126/science.335.6068.520 News Focus Ecology Rebuilding Wetlands by Managing the Muddy Mississippi Carolyn Gramling Coastal managers and scientists have struggled to find ways to restore water flow through the wetlands of the Mississippi delta and bring back the sediment, supply of which has been cut in half by humanmade river channels, levees, and dams intended to control the river and save coastal communities from flooding. The U.S. Army Corps of Engineers opened the Morganza spillway during the 2011 Mississippi River floods to divert floodwaters, which offered a rare opportunity to conduct a large-scale natural experiment in real time. The floodwaters did carry enough sediment to help rebuild the wetlands, but that material didn't always stay where it could do the most good. However, researchers gained valuable insights-including ideas about how spillway design can help produce more targeted sediment deposits, and what volume of flow through the spillways might be required for effective wetland rebuilding.
Gwen Noda

Know Your Ocean | Science and Technology | Ocean Today - 0 views

  •  
    NARRATOR: Even though the ocean covers seventy percent of the Earth's surface, people tend to know more information about land than the sea. As a result, our understanding of the ocean is often incomplete or full of misconceptions. How well do you know the ocean? You may think Earth has five separate oceans. They're clearly labeled on our maps. But, in actuality, these are all connected, and part of one global ocean system. Ever wonder why the ocean is blue? You may have heard its because the water reflects the color of the sky. Not quite. Sunlight contains all the colors of the rainbow. When it hits the ocean, it gets scattered by the water molecules. Blue light is scattered the most, which is why the ocean appears blue. Even more interesting is that floating plants and sediments in the water can cause light to bounce in such a way for the ocean to appear green, yellow, and even red! Another idea some people have is that the sea floor is flat. Actually, just like land, the sea floor has canyons, plains, and mountain ranges. And many of these features are even bigger than those found on land. You may also think that our ocean's saltwater is just a mix of water and table salt. Not so. Seawater's "salt" is actually made of dissolved minerals from surface runoff. That is, excess water from rain and melting snow flowing over land and into the sea. This is why the ocean doesn't have the same level of salinity everywhere. Salinity varies by location and season. Finally, you may have heard that melting sea ice will cause sea levels to rise. In reality, sea ice is just frozen seawater, and because it routinely freezes and melts, its volume is already accounted for in the ocean. Sea levels can rise, however, from ice that melts off land and into the ocean. Understanding basic facts about the ocean is important since it affects everything from our atmosphere to our ecosystems. By knowing your ocean, you are better prepared to help protect it.
Gwen Noda

Phanerozoic Earth System Evolution and Marine Biodiversity - 0 views

  •  
    "Abstract The Phanerozoic fossil record of marine animal diversity covaries with the amount of marine sedimentary rock. The extent to which this covariation reflects a geologically controlled sampling bias remains unknown. We show that Phanerozoic records of seawater chemistry and continental flooding contain information on the diversity of marine animals that is independent of sedimentary rock quantity and sampling. Interrelationships among variables suggest long-term interactions among continental flooding, sulfur and carbon cycling, and macroevolution. Thus, mutual responses to interacting Earth systems, not sampling biases, explain much of the observed covariation between Phanerozoic patterns of sedimentation and fossil biodiversity. Linkages between biodiversity and environmental records likely reflect complex biotic responses to changing ocean redox conditions and long-term sea-level fluctuations driven by plate tectonics. "
Gwen Noda

Could East Antarctica Be Headed for Big Melt? - 0 views

  •  
    "The Orangeburg Scarp, a band of hard, crusty sediment teeming with tiny plankton fossils that runs from Florida to Virginia, marks an ancient shoreline where waves eroded bedrock 3 million years ago. That period, the middle Pliocene, saw carbon dioxide levels and temperatures that many scientists say could recur by 2100. The question is: Could those conditions also result in Pliocene-epoch sea levels within the next 10 to 20 centuries, sea levels that may have been as much as 35 meters higher than they are today? The answer, say climate scientists, may lie 17,000 kilometers away in East Antarctica. The East Antarctic Ice Sheet is the world's largest, a formation up to 4 km thick and 11 million km2 in area that covers three-quarters of the southernmost continent. Its glaciers were thought to sit mostly above sea level, protecting them from the type of ocean-induced losses that are affecting the West Antarctic Ice Sheet. But studies of ancient sea levels that focus on the Orangeburg Scarp and other sites challenge that long-held assumption. Not everybody believes the records from Orangeburg. But combined with several other new lines of evidence, they support the idea that parts of East Antarctica could indeed be more prone to melting than expected. "
1 - 6 of 6
Showing 20 items per page