Skip to main content

Home/ COSEE-West/ Group items tagged acid

Rss Feed Group items tagged

Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

How Fish Oil Fights Inflammation - ScienceNOW - 0 views

  •  
    Pass the bass, please. Omega-3 fatty acids, a main component of fish oil, have a reputation as potent anti-inflammatory agents. Now researchers think they know how the acids block this immune response. They've also found that omega-3s can help fight diabetes in obese mice, pointing the way to potential therapies in humans. To understand how omega-3s curb inflammation, Jerrold Olefsky, an endocrinologist at the University of California, San Diego, and his colleagues trawled through the data on a family of proteins called G protein-coupled receptors, which can bind to a number of different fatty acids. One of these receptors-GPR120-"jumped right out," Olefsky says. Olefsky's group found it on immune cells involved in inflammation, as well as in mature fat cells, and they noted that it seemed to bind to omega-3s.
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 0 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification. Download A plague in air and sea: Neutralizing the acid of progress"
Gwen Noda

http://www.oceanacidification.org.uk - 0 views

  •  
    The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. It is the little known consequence of living in a high CO2 world, dubbed at the 2009 United Nations Climate Change Conference (COP15) as the "evil twin of climate change". The oceans currently absorb approximately half of the CO2 produced by burning fossil fuel; put simply, climate change would be far worse if it were not for the oceans. However, there is a cost to the oceans - when CO2 dissolves in seawater it forms carbonic acid and as more CO2 is taken up by the oceans surface, the pH decreases, moving towards a less alkaline and therefore more acidic state. Already ocean pH has decreased by about 30% and if we continue emitting CO2 at the same rate by 2100 ocean acidity will increase by about 150%, a rate that has not been experienced for at least 400,000 years. Such a monumental alteration in basic ocean chemistry is likely to have wide implications for ocean life, especially for those organisms that require calcium carbonate to build shells or skeletons. Ocean acidification is a relatively new field of research, with most of the studies having been conducted over the last decade. While it is gaining some attention among policy makers, international leaders and the media, scientists find there is still a lack of understanding.
Gwen Noda

Guide to best practices for ocean acidification research and data reporting »... - 0 views

  •  
    1 The carbon dioxide system in seawater: equilibrium chemistry and measurements 1.1 Introduction 1.2 Basic chemistry of carbon dioxide in seawater 1.3 The definition and measurement of pH in seawater 1.4 Implications of other acid-base equilibria in seawater on seawater alkalinity 1.5 Choosing the appropriate measurement techniques 1.6 Conclusions and recommendations 2 Approaches and tools to manipulate the carbonate chemistry 3 Atmospheric CO2 targets for ocean acidification perturbation experiments 4 Designing ocean acidification experiments to maximise inference 5 Bioassays, batch culture and chemostat experimentation 6 Pelagic mesocosms 7 Laboratory experiments and benthic mesocosm studies 8 In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p(CO2) perturbations 9 Studies of acid-base status and regulation 9.1 Introduction 9.2 Fundamentals of acid-base regulation 9.3 Measurement of pH, total CO2 and non-bicarbonate buffer values 9.4 Compartmental measurements: towards a quantitative picture 9.5 Overall suggestions for improvements 10 Studies of metabolic rate and other characters across life stages 10.1 Introduction 10.2 Definition of a frame of reference: studying specific characters across life stages 10.3 Approaches and methodologies: metabolic studies 10.4 Study of early life stages 10.5 Techniques for oxygen analyses 10.6 Overall suggestions for improvements 10.7 Data reporting 10.8 Recommendations for standards and guidelines 11 Production and export of organic matter 12 Direct measurements of calcification rates in planktonic organisms 13 Measurements of calcification and dissolution of benthic organisms and communities 14 Modelling considerations 15 Safeguarding and sharing ocean acidification data 15.1 Introduction 15.2 Sharing ocean acidification data 15.3 Safeguarding ocean acidification data 15.4 Harmonising ocean acidification data and metadata 15.5 Disseminating ocean
Gwen Noda

Hydronium-Hydroxide Balance - 0 views

  •  
    Hydronium/Hydroxide Balance When an acid dissolves in water, additional H3O+ is formed, increasing the concentration of H3O+. For example, the concentration of H3O+ might be increased from 10-7 M up to 10-5 M. That is 100 times more concentrated. Note that the pH, the number behind the negative sign in the exponent, changes from 7 to 5. This is why acidic solutions have pH values lower than 7.
Gwen Noda

Acid Rain and the Greenhouse Effect (Fluid Earth, Unit 4, Topic 6) - 0 views

  •  
    posted online with permission "Acid Rain and the Greenhouse Effect" (Fluid Earth, Unit 4, Topic 6)
Gwen Noda

Litmus Paper - Advanced Organizer (Acid and Base Test) - 0 views

  •  
    Objective: Students will learn significance of scientific testing and how scientists get results and information. They will learn about acids and bases in relation to the environment and people.
Gwen Noda

Acids, Bases, and Indicators - 0 views

  •  
    "Objectives: This is a multileveled approach to learning some of the common characteristics of acidic and basic solutions and use of some of the common indicators."
Gwen Noda

Ocean acidification due to increasing atmospheric carbon dioxide - Publications - The R... - 0 views

  •  
    Carbon dioxide (CO2) emitted to the atmosphere by human activities is being absorbed by the oceans, making them more acidic (lowering the pH the measure of acidity).
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 1 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification."
Gwen Noda

Talking about pH - 0 views

  •  
    how do you describe and talk about acids, bases, and pH?
Gwen Noda

NRDC: Ocean Acidification: The Other CO2 Problem, Video "Acid Test" - 0 views

  •  
    Video, "ACID TEST: the Global Challenge of Ocean Acificiation," The film originally aired on Discovery Planet Green. narrated by Sigourney Weaver and featuring several very knowledgable scientists. 21 min, 34 sec long\n\nThere is a choice of "high quality or "normal quality," presumably to accommodate your Internet connection speed. There is also a link to a "YouTube" version that has a slightly larger image.
Gwen Noda

NRDC: Ocean Acidification: The Other CO2 Problem, Science Behind "Acid Test" - 0 views

  •  
    Science behind the film "ACID TEST: the Global Challenge of Ocean Acificiation"
Gwen Noda

ScienceDirect.com - Earth-Science Reviews - Recognising ocean acidification in deep tim... - 0 views

  •  
    "Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary Sarah E. GreeneCorresponding author contact information, 1, E-mail the corresponding author, Rowan C. Martindale1, E-mail the corresponding author, Kathleen A. Ritterbush E-mail the corresponding author, David J. Bottjer E-mail the corresponding author, Frank A. Corsetti E-mail the corresponding author, William M. Berelson E-mail the corresponding author Department of Earth Sciences, University of Southern California, Los Angeles, California, USA 90089 Received 22 July 2011. Accepted 17 March 2012. Available online 5 April 2012. While demonstrating ocean acidification in the modern is relatively straightforward (measure increase in atmospheric CO2 and corresponding ocean chemistry change), identifying palaeo-ocean acidification is problematic. The crux of this problem is that the rock record is a constructive archive while ocean acidification is essentially a destructive (and/or inhibitory) phenomenon. This is exacerbated in deep time without the benefit of a deep ocean record. Here, we discuss the feasibility of, and potential criteria for, identifying an acidification event in deep time. Furthermore, we investigate the evidence for ocean acidification during the Triassic-Jurassic (T-J) boundary interval, an excellent test case because 1) it occurs in deep time, beyond the reach of deep sea drilling coverage; 2) a potential trigger for acidification is known; and 3) it is associated with one of the 'Big Five' mass extinctions which disproportionately affected modern-style invertebrates. Three main criteria suggest that acidification may have occurred across the T-J transition. 1) The eruption of the Central Atlantic Magmatic Province (CAMP) and the associated massive and rapid release of CO2 coincident with the end-Triassic mass extinction provide a suitable trigger for an acidification event (
1 - 20 of 37 Next ›
Showing 20 items per page