Skip to main content

Home/ About The Indian Ocean/ Group items tagged isolement

Rss Feed Group items tagged

Jérôme OLLIER

Arabian Sea Humpback Whales Isolated for 70,000 Years - WCS - 0 views

  •  
    Arabian Sea Humpback Whales Isolated for 70,000 Years.
  •  
    Arabian Sea Humpback Whales Isolated for 70,000 Years.
Jérôme OLLIER

Unraveling the potential of bacteria isolated from the equatorial region of Indian Ocea... - 0 views

  •  
    The marine environment is most vital and flexible with continual variations in salinity, temperature, and pressure. As a result, bacteria living in such an environment maintain the adaption mechanisms that are inherent in unstable environmental conditions. The harboring of metal-resistant genes in marine bacteria contributes to their effectiveness in metal remediation relative to their terrestrial counterparts. A total of four mercury-resistant bacteria (MRB) i.e. NIOT-EQR_J7 (Alcanivorax xenomutans); NIOT-EQR_J248 and NIOT-EQR_J251 (Halomonas sp.); and NIOT-EQR_J258 (Marinobacter hydrocarbonoclasticus) were isolated from the equatorial region of the Indian Ocean (ERIO) and identified by analyzing the 16S rDNA sequence. The MRBs can reduce up to 70% of Hg(II). The mercuric reductase (merA) gene was amplified and the mercury (Hg) volatilization was confirmed by the X-ray film method. The outcomes obtained from ICP-MS validated that the Halomonas sp. NIOT-EQR_J251 was more proficient in removing the Hg from culture media than other isolates. Fourier transform infrared (FT-IR) spectroscopy results revealed alteration in several functional groups attributing to the Hg tolerance and reduction. The Gas Chromatography-Mass Spectrometry (GC-MS) analysis confirmed that strain Halomonas sp. (NIOT-EQR_J248 and NIOT-EQR_J251) released Isooctyl thioglycolate (IOTG) compound under mercury stress. The molecular docking results suggested that IOTG can efficiently bind with the glutathione S-transferase (GST) enzyme. A pathway has been hypothesized based on the GC-MS metabolic profile and molecular docking results, suggesting that the compound IOTG may mediate mercuric reduction via merA-GST related detoxification pathway.
Jérôme OLLIER

On the Beach: killer plastic art at the end of the earth - video - @guardianeco - 0 views

  •  
    On an isolated stretch of Western Australian beach, artist Tim Pearn creates art from colourful washed-up plastic waste
  •  
    On an isolated stretch of Western Australian beach, artist Tim Pearn creates art from colourful washed-up plastic waste
Jérôme OLLIER

Scientists Studying Dolphins in Bangladesh Find the Bay of Bengal a Realm of Evolutiona... - 0 views

  •  
    Genetic research on Indo-Pacific bottlenose and humpback dolphins finds animals distinct from neighboring populations. Extreme oceanographic features in the Bay of Bengal creates conditions for evolutionary isolation needed for differentiation.
Jérôme OLLIER

The Effect of Deep Oceanic Flushing on Water Properties and Ecosystem Functioning Withi... - 0 views

  •  
    Within atolls, deep water channels exert significant control over local hydrodynamic conditions; which are important drivers of planktonic distributions. To examine planktonic responses to oceanography, this study tested the effect of proximity and exposure to deep oceanic flushing through these channels on water properties and planktonic assemblages across four atolls (Diego Garcia, Salomon, Egmont, and Peros Banhos) in the British Indian Ocean Territory Marine Reserve. As this is the largest, most isolated and sparsely inhabited atoll complex in the world, it provides the perfect experimental conditions to test the effect of oceanic flushing without confounding factors related to anthropogenic development. Results are discussed in the context of ecosystem functioning. A total of 30 planktonic taxa and 19,539 individuals were identified and counted. Abundance was significantly different between atolls and significantly greater within inner regions in all atolls except southeast Egmont. Planktonic assemblage composition significantly differed between atolls and between inner and outer stations; exhibiting higher similarity between outer stations. Within outer stations of Diego Garcia, Peros Banhos, and Egmont, evidence suggesting oceanic flushing of cold, saline, and dense water was observed, however a longer time series is required to conclusively demonstrate tidal forcing of this water through deep water channels. Planktonic variability between inner and outer atoll regions demonstrates that broad comparisons between oceanic and lagoon regions fail to capture the complex spatial dynamics and hydrodynamic interactions within atolls. Better comprehension of these distributional patterns is imperative to monitor ecosystem health and functioning, particularly due to increasing global anthropogenic pressures related to climate change. The extensive coral bleaching described in this paper highlights this concern.
Jérôme OLLIER

Findings from the Global Reef Expedition mission to the Chagos Archipelago - @LivingOce... - 0 views

  •  
    Today, the Khaled BIN SULTAN Living Oceans Foundation published our findings on the state of coral reefs in the Chagos Archipelago. This research mission gave us the chance to study some of the most isolated and well-protected coral reefs in the world. Our research, based on thousands of scientific surveys, found reefs in the Chagos Archipelago were some of the most diverse and had a higher density of fish than all of the reefs studied on the Global Reef Expedition, the largest coral reef survey and mapping expedition in history.
Jérôme OLLIER

The blue diatom Haslea ostrearia from the Indian Ocean coast of South Africa, with comp... - 0 views

  •  
    Haslea ostrearia represents the model species of blue diatoms, a cluster of benthic marine species all belonging to the genus Haslea, noticeable for producing a blue pigment called marennine famous for its greening activity on the gills of bivalves but also for its potential in biotechnology. The exact distribution of H. ostrearia is unknown. It has been long considered a cosmopolitan diatom, but recent studies provided evidence for cryptic diversity and the existence of several other blue species, some of them inhabiting places where diatoms described as H. ostrearia had previously been observed. Recently, a marine diatom with blue tips was isolated into clonal culture from a plankton net sample from Kei Mouth on the Indian Ocean coast of South Africa. It was identified as H. ostrearia through a combination of LM/SEM microscopy and molecular analysis. This constitutes the first established record of this species from South Africa and the Indian Ocean and the second record for the southern hemisphere. Molecular barcoding clearly discriminated the South African strain from an Australian strain and cox1 based molecular phylogeny associated it instead with strains from the French Atlantic Coast, raising questions about the dispersal of this species. The complete mitochondrial and plastid genomes were compared to those of Haslea nusantara and Haslea silbo. Multigene phylogenies performed with all protein-coding genes of the plastome and the mitogenome associated H. ostrearia with H. silbo. In addition, complete sequences of circular plasmids were obtained and one of them showed an important conservation with a plasmid found in H. silbo.
Jérôme OLLIER

Coral Reef Health Status versus Muricid Bioindicator in the Lakshadweep Archipelago - A... - 0 views

  •  
    Island ecosystems possess pristine environmental characteristics; human influence poses a serious threat to the fragile and susceptible biological processes on the islands (Sahu et al., 2013; Jha et al., 2015). Isolated oceanic islands support a highly sensitive and fragile coral reef ecosystem that offers unique possibilities to study the ecological changes and consequences that come with human settlement (Jha et al., 2011; Connor et al., 2012; Jha et al., 2013). Coral reefs are vital and core economic assets for any country that lies in the tropical and sub-tropical marine environment. Globally, the estimated economic support from this habitat has been calculated to be $375 billion per year (Cesar and Beukering, 2004; Brander et al., 2007). The important ecological services provided by these coral reef habitats have been identified as fish production, control of soil erosion on land, carbon sequestration, breeding grounds, etc. The coral reefs of Lakshadweep Islands are predominantly occupied by Scleractinian corals at various levels of the benthic substrate such as reef flat lagoon, reef crest, and reef slope. They are under great threat due to natural disturbances (Kumaraguru et al., 2005; Wilson et al., 2005) as well as anthropogenic disturbances (Wilson, 2010). The assessment of the biological indicators of benthic reef habitat is a key factor that helps in understanding the health status of any coral reef ecosystem (Al-Sofyani et al., 2014). The Crown-of-thorns Starfish (Acanthaster planciLinnaeus, 1758) is a major coral predator reported from various coral reef ecosystems. Their devastating population outbreaks have posed a great threat to coral reefs of the Indo-Pacific coastal region in the last five decades (Birkeland and Lukas, 1990; Fabricius et al., 2010). Besides the Crown-of-thorns Starfish, zooxanthellae-consuming gastropods are also reported as indicators for assessing the health status of corals in the Red Sea reef ecosystem (Mohamed et al., 2012;
Jérôme OLLIER

Via @WhySharksMatter - Distinct coral reef habitat communities characterized by environ... - 0 views

  •  
    Coral reefs are biodiversity hotspots, places of high endemicity and provide essential services to billions of people globally. With increasing threats to these reefs worldwide, there is a need to implement faster, more efficient ways to monitor spatial and temporal patterns of biodiversity. Environmental DNA (eDNA) metabarcoding offers a promising tool to address this issue, as it has revolutionized our ability to monitor biodiversity from complex environmental samples such as seawater. However, the capacity for eDNA to resolve fine scale shifts in community composition across habitats in seascapes is yet to be fully explored. Here, we applied eDNA metabarcoding using the rRNA 18S Universal eukaryote assay to explore differences in community profiles between samples collected from the lagoon and reef slope habitats across more than 170 km of the Ningaloo Coast World Heritage Area in Western Australia. We recovered 2061 amplicon sequence variants that comprised of 401 taxa spanning 14 different metazoan phyla such as cnidarians, poriferans, molluscs, algae, worms, and echinoderms. Our results revealed strong clustering of samples by habitat type across the length of the reef. Community dissimilarity (beta diversity) between samples collected from the reef slope and lagoon habitats was high and was driven largely by a strong rate of spatial turnover, indicating a distinct set of taxa representing each reef zone community. We also detected a strong pattern of isolation by distance within our slope samples, suggesting that communities are spatially stratified across the length of the reef. Despite high connectivity due to regular flushing of the lagoon environment, our results demonstrate that metabarcoding of seawater eDNA from different habitats can resolve fine scale community structure. By generating multi-trophic biodiversity data, our study also provided baseline data for Ningaloo from which future changes can be assessed.
Jérôme OLLIER

Microbiomes of Healthy and Bleached Corals During a 2016 Thermal Bleaching Event in the... - 0 views

  •  
    As seawater temperature rises, repeated thermal bleaching events have negatively affected the reefs of the Andaman Sea for over decades. Studies on the coral-associated microbial diversity of prokaryotes and microbial eukaryotes (microbiome) in healthy and bleached corals are important to better understand the coral holobionts that involved augmented resistance to stresses, and this information remains limited in the Andaman Sea of Thailand. The present study thereby described the microbiomes of healthy (unbleached) and bleached colonies of four prevalent corals, Acropora humilis, Platygyra sp., Pocillopora damicornis, and Porites lutea, along with the surrounding seawater and sediments, that were collected during a 2016 thermal bleaching event, using 16S and 18S rRNA genes next-generation sequencing (NGS). Both prokaryotic and eukaryotic microbes showed isolated community profiles among sample types (corals, sediment, and seawater) [analysis of similarities (ANOSIM): p = 0.038 for prokaryotes, p < 0.001 for microbial eukaryotes] and among coral genera (ANOSIM: p < 0.001 for prokaryotes and microbial eukaryotes). In bleached state corals, we found differences in microbial compositions from the healthy state corals. Prevalent differences shared among bleached coral genera (shared in at least three coral genera) included a loss of reported coral-beneficial microbes, such as Pseudomonadales, Alteromonadales, and Symbiodinium; meanwhile an increase of putative coral-pathogenic Malassezia and Aspergillus. This difference could affect carbon and nitrogen availability for coral growth, reflective of a healthy or bleached state. Our findings in part supported previously microbial dysbiosis knowledge of thermal bleaching coral microbiomes around South East Asia marine geography, and together ongoing efforts are to support the understanding and management of microbial diversity to reduce the negative impacts to corals in massive thermal bleaching events.
Jérôme OLLIER

Spatiotemporal distributions of air-sea CO2 flux modulated by windseas in the Southern ... - 0 views

  •  
    The Southern Indian Ocean is a major reservoir for rapid carbon exchange with the atmosphere, plays a key role in the world's carbon cycle. To understand the importance of anthropogenic CO2 uptake in the Southern Indian Ocean, a variety of methods have been used to quantify the magnitude of the CO2 flux between air and sea. The basic approach is based on the bulk formula-the air-sea CO2 flux is commonly calculated by the difference in the CO2 partial pressure between the ocean and the atmosphere, the gas transfer velocity, the surface wind speed, and the CO2 solubility in seawater. However, relying solely on wind speed to measure the gas transfer velocity at the sea surface increases the uncertainty of CO2 flux estimation. Recent studies have shown that the generation and breaking of ocean waves also significantly affect the gas transfer process at the air-sea interface. In this study, we highlight the impact of windseas on the process of air-sea CO2 exchange and address its important role in CO2 uptake in the Southern Indian Ocean. We run the WAVEWATCH III model to simulate surface waves in this region over the period from January 1st 2002 to December 31st 2021. Then, we use the spectral partitioning method to isolate windseas and swells from total wave fields. Finally, we calculate the CO2 flux based on the new semiempirical equation for gas transfer velocity considering only windseas. We found that after considering windseas' impact, the seasonal mean zonal flux (mmol/m2·d) increased approximately 10%-20% compared with that calculated solely on wind speed in all seasons. Evolution of air-sea net carbon flux (PgC) increased around 5.87%-32.12% in the latest 5 years with the most significant seasonal improvement appeared in summer. Long-term trend analysis also indicated that the CO2 absorption capacity of the whole Southern Indian Ocean gradually increased during the past 20 years. These findings extend the understanding of the roles of the Southern Indian Ocea
Jérôme OLLIER

Diversity, metabolome profiling and bioactivities of benthic filamentous cyanobacteria ... - 0 views

  •  
    Introduction: Cyanobacteria are important members of the dense biofilms that colonize available substrates in mangrove habitats worldwide. However, their taxonomic diversity and biological activities have received little attention.
1 - 14 of 14
Showing 20 items per page