Skip to main content

Home/ Dr. Goodyear/ Group items tagged secretion

Rss Feed Group items tagged

Nathan Goodyear

Regulation of Cyclooxygenase-2 Expression in Monocytes by Ligation of the Receptor for ... - 0 views

  •  
    good article on the biochemistry of COX2 in inflammation.  Particularily with AGE and it the receptors RAGE.  COX2 has been shown to decrease insulin secretion through inhibition of islet cell production, but in the presence of disease level inflammation, COX2 can be a part of a very dangerous autocrine/paracrine loop.
Nathan Goodyear

The Relationships Between Testosterone, Body Composition, and Insulin Resistance - 0 views

  •  
    case study that showed removal of testosterone secreting adrenal tumor worsened insulin function and contributed to weight gain 9 months post surgery.  This is a case study and far from conclusive.
Nathan Goodyear

Lowered testosterone in male obesity: Mechanisms, morbidity and management Tang Fui MN,... - 0 views

  • The number of overweight people is expected to increase from 937 million in 2005 to 1.35 billion in 2030
  • Similarly the number of obese people is projected to increase from 396 million in 2005 to 573 million in 2030
  • By 2030, China alone is predicted to have more overweight men and women than the traditional market economies combined
  • ...37 more annotations...
  • diacylglycerol O-acyltransferase 2 (DGAT2), mechanistically implicated in this differential storage, [10] is regulated by dihydrotestosterone, [11] suggesting a potential role for androgens to influence the genetic predisposition to either the MHO or MONW phenotype.
  • bariatric surgery achieves 10%-30% long-term weight loss in controlled studies
  • The fact that obese men have lower testosterone compared to lean men has been recognized for more than 30 years
  • Reductions in testosterone levels correlate with the severity of obesity and men
  • epidemiological data suggest that the single most powerful predictor of low testosterone is obesity, and that obesity is a major contributor of the age-associated decline in testosterone levels.
  • healthy ageing by itself is uncommonly associated with marked reductions in testosterone levels
  • obesity blunts this LH rise, obesity leads to hypothalamic-pituitary suppression irrespective of age which cannot be compensated for by physiological mechanisms
  • Reductions in total testosterone levels are largely a consequence of reductions in sex hormone binding globulin (SHBG) due to obesity-associated hyperinsulinemia
  • although controversial, measurement of free testosterone levels may provide a more accurate assessment of androgen status than the (usually preferred) measurement of total testosterone in situations where SHBG levels are outside the reference range
  • SHBG increases with age
  • marked obesity however is associated with an unequivocal reduction of free testosterone levels, where LH and follicle stimulating hormone (FSH) levels are usually low or inappropriately normal, suggesting that the dominant suppression occurs at the hypothalamic-pituitary level
  • adipose tissue, especially when in the inflamed, insulin-resistant state, expresses aromatase which converts testosterone to estradiol (E 2 ). Adipose E 2 in turn may feedback negatively to decrease pituitary gonadotropin secretion
  • diabetic obesity is associated with decreases in circulatory E 2
  • In addition to E 2 , increased visceral fat also releases increased amounts of pro-inflammatory cytokines, insulin and leptin; all of which may inhibit the activity of the HPT axis at multiple levels
  • In the prospective Massachusetts Male Aging Study (MMAS), moving from a non-obese to an obese state resulted in a decline of testosterone levels
  • weight loss, whether by diet or surgery, increases testosterone levels proportional to the amount of weight lost
  • fat is androgen-responsive
  • low testosterone may augment the effects of a hypercaloric diet
  • In human male ex vivo adipose tissue, testosterone decreased adipocyte differentiation by 50%.
  • Testosterone enhances catecholamine-induced lipolysis in vitro and reduces lipoprotein lipase activity and triglyceride uptake in human abdominal adipose tissue in vivo
  • in men with prostate cancer receiving 12 months of androgen deprivation therapy, fat mass increased by 3.4 kg and abdominal VAT by 22%, with the majority of these changes established within 6 months
  • severe sex steroid deficiency can increase fat mass rapidly
  • bidirectional relationship between testosterone and obesity
  • increasing body fat suppresses the HPT axis by multiple mechanisms [30] via increased secretion of pro-inflammatory cytokines, insulin resistance and diabetes; [19],[44] while on the other hand low testosterone promotes further accumulation of total and visceral fat mass, thereby exacerbating the gonadotropin inhibition
  • androgens may play a more significant role in VAT than SAT
  • men undergoing androgen depletion for prostate cancer show more marked increases in visceral compared to subcutaneous fat following treatment
    • Nathan Goodyear
       
      Interesting: low T increases VAT, yet T therapy does not reduce VAT, yet T therapy reduces SAT.
  • irisin, derived from muscle, induces brown fat-like properties in rodent white fat
  • androgens can act via the PPARg-pathway [37] which is implicated in the differentiation of precursor fat cells to the energy-consuming phenotype
  • low testosterone may compound the effect of increasing fat mass by making it more difficult for obese men to lose weight via exercise
  • pro-inflammatory cytokines released by adipose tissue may contribute to loss of muscle mass and function, leading to inactivity and further weight gain in a vicious cycle
  • Sarcopenic obesity, a phenotype recapitulated in men receiving ADT for prostate cancer, [55] may not only be associated with functional limitations, but also aggravate the metabolic risks of obesity;
  • observational evidence associating higher endogenous testosterone with reduced loss of muscle mass and crude measures of muscle function in men losing weight
  • genuine reactivation of the HPT axis in obese men requires more substantial weight-loss
  • A number of intervention studies have confirmed that both diet- and surgically-induced weight losses are associated with increased testosterone, with the rise in testosterone generally proportional to the amount of weight lost
  • men, regardless of obesity level, can benefit from the effect of weight loss.
  • inconsistent effect of testosterone on VAT
  •  
    to be read
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

  • Around 50% of ageing, obese men presenting to the diabetes clinic have lowered testosterone levels relative to reference ranges based on healthy young men
  • The absence of high-level evidence in this area is illustrated by the Endocrine Society testosterone therapy in men with androgen deficiency clinical practice guidelines (Bhasin et al. 2010), which are appropriate for, but not specific to men with metabolic disorders. All 32 recommendations made in these guidelines are based on either very low or low quality evidence.
  • A key concept relates to making a distinction between replacement and pharmacological testosterone therapy
  • ...59 more annotations...
  • The presence of symptoms was more closely linked to increasing age than to testosterone levels
  • Findings similar to type 2 diabetes were reported for men with the metabolic syndrome, which were associated with reductions in total testosterone of −2.2 nmol/l (95% CI −2.41 to 1.94) and in free testosterone
  • low testosterone is more predictive of the metabolic syndrome in lean men
  • Cross-sectional studies uniformly show that 30–50% of men with type 2 diabetes have lowered circulating testosterone levels, relative to references based on healthy young men
  • In a recent cross-sectional study of 240 middle-aged men (mean age 54 years) with either type 2 diabetes, type 1 diabetes or without diabetes (Ng Tang Fui et al. 2013b), increasing BMI and age were dominant drivers of low total and free testosterone respectively.
  • both diabetes and the metabolic syndrome are associated with a modest reduction in testosterone, in magnitude comparable with the effect of 10 years of ageing
  • In a cross-sectional study of 490 men with type 2 diabetes, there was a strong independent association of low testosterone with anaemia
  • In men, low testosterone is a marker of poor health, and may improve our ability to predict risk
    • Nathan Goodyear
       
      probably the most important point made in this article
  • low testosterone identifies men with an adverse metabolic phenotype
  • Diabetic men with low testosterone are significantly more likely to be obese or insulin resistant
  • increased inflammation, evidenced by higher CRP levels
  • Bioavailable but not free testosterone was independently predictive of mortality
  • It remains possible that low testosterone is a consequence of insulin resistance, or simply a biomarker, co-existing because of in-common risk factors.
  • In prospective studies, reviewed in detail elsewhere (Grossmann et al. 2010) the inverse association of low testosterone with metabolic syndrome or diabetes is less consistent for free testosterone compared with total testosterone
  • In a study from the Framingham cohort, SHBG but not testosterone was prospectively and independently associated with incident metabolic syndrome
  • low SHBG (Ding et al. 2009) but not testosterone (Haring et al. 2013) with an increased risk of future diabetes
  • In cross-sectional studies of men with (Grossmann et al. 2008) and without (Bonnet et al. 2013) diabetes, SHBG but not testosterone was inversely associated with worse glycaemic control
  • SHBG may have biological actions beyond serving as a carrier protein for and regulator of circulating sex steroids
  • In men with diabetes, free testosterone, if measured by gold standard equilibrium dialysis (Dhindsa et al. 2004), is reduced
    • Nathan Goodyear
       
      expensive, laborious process filled with variables
  • Low free testosterone remains inversely associated with insulin resistance, independent of SHBG (Grossmann et al. 2008). This suggests that the low testosterone–dysglycaemia association is not solely a consequence of low SHBG.
  • Experimental evidence reviewed below suggests that visceral adipose tissue is an important intermediate (rather than a confounder) in the inverse association of testosterone with insulin resistance and metabolic disorders.
  • testosterone promotes the commitment of pluripotent stem cells into the myogenic lineage and inhibits their differentiation into adipocytes
  • testosterone regulates the metabolic functions of mature adipocytes (Xu et al. 1991, Marin et al. 1995) and myocytes (Pitteloud et al. 2005) in ways that reduce insulin resistance.
  • Pre-clinical evidence (reviewed in Rao et al. (2013)) suggests that at the cellular level, testosterone may improve glucose metabolism by modulating the expression of the glucose-transported Glut4 and the insulin receptor, as well as by regulating key enzymes involved in glycolysis.
  • More recently testosterone has been shown to protect murine pancreatic β cells against glucotoxicity-induced apoptosis
  • Interestingly, a reciprocal feedback also appears to exist, given that not only chronic (Cameron et al. 1990, Allan 2013) but also, as shown more recently (Iranmanesh et al. 2012, Caronia et al. 2013), acute hyperglycaemia can lower testosterone levels.
  • There is also evidence that testosterone regulates insulin sensitivity directly and acutely
  • In men with prostate cancer commencing androgen deprivation therapy, both total as well as, although not in all studies (Smith 2004), visceral fat mass increases (Hamilton et al. 2011) within 3 months
  • More prolonged (>12 months) androgen deprivation therapy has been associated with increased risk of diabetes in several large observational registry studies
  • Testosterone has also been shown to reduce the concentration of pro-inflammatory cytokines in some, but not all studies, reviewed recently in Kelly & Jones (2013). It is not know whether this effect is independent of testosterone-induced changes in body composition.
  • the observations discussed in this section suggest that it is the decrease in testosterone that causes insulin resistance and diabetes. One important caveat remains: the strongest evidence that low testosterone is the cause rather than consequence of insulin resistance comes from men with prostate cancer (Grossmann & Zajac 2011a) or biochemical castration, and from mice lacking the androgen receptor.
  • Several large prospective studies have shown that weight gain or development of type 2 diabetes is major drivers of the age-related decline in testosterone levels
  • there is increasing evidence that healthy ageing by itself is generally not associated with marked reductions in testosterone
  • Circulating testosterone, on an average 30%, is lower in obese compared with lean men
  • increased visceral fat is an important component in the association of low testosterone and insulin resistance
  • The vast majority of men with metabolic disorders have functional gonadal axis suppression with modest reductions in testosterone levels
  • obesity is a dominant risk factor
  • men with Klinefelter syndrome have an increased risk of metabolic disorders. Interestingly, greater body fat mass is already present before puberty
  • Only 5% of men with type 2 diabetes have elevated LH levels
  • inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion from GNRH neurons situated in the preoptic area
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • suppression of the diabesity-associated HPT axis is functional, and may hence be reversible
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Modifiable risk factors such as obesity and co-morbidities are more strongly associated with a decline in circulating testosterone levels than age alone
  • 55% of symptomatic androgen deficiency reverted to a normal testosterone or an asymptomatic state after 8-year follow-up, suggesting that androgen deficiency is not a stable state
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • Leptin treatment resolves hypogonadism in leptin-deficient men
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • change in BMI was associated with the change in testosterone (Corona et al. 2013a,b).
  • weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in men who improved their glycaemic control over time, testosterone levels increased. By contrast, in those men in whom glycaemic control worsened, testosterone decreased
  • testosterone levels should be measured after successful weight loss to identify men with an insufficient rise in their testosterone levels. Such men may have HPT axis pathology unrelated to their obesity, which will require appropriate evaluation and management.
  •  
    Article discusses the expanding evidence of low T and Metabolic syndrome.
Nathan Goodyear

Testosterone and glucose metabolism in men: current concepts and controversies - 0 views

    • Nathan Goodyear
       
      80% of E2 production in men, that will cause low T in men, comes from SQ adiposity.  This leads to increase in visceral adiposity.
  • Only 5% of men with type 2 diabetes have elevated LH levels (Dhindsa et al. 2004, 2011). This is consistent with recent findings that the inhibition of the gonadal axis predominantly takes place in the hypothalamus, especially with more severe obesity
  • Metabolic factors, such as leptin, insulin (via deficiency or resistance) and ghrelin are believed to act at the ventromedial and arcuate nuclei of the hypothalamus to inhibit gonadotropin-releasing hormone (GNRH) secretion
  • ...32 more annotations...
  • kisspeptin has emerged as one of the most potent secretagogues of GNRH release
  • Consistent with the hypothesis that obesity-mediated inhibition of kisspeptin signalling contributes to the suppression of the HPT axis, infusion of a bioactive kisspeptin fragment has been recently shown to robustly increase LH pulsatility, LH levels and circulating testosterone in hypotestosteronaemic men with type 2 diabetes
  • Figure 4
  • Interestingly, a recent 16-week study of experimentally induced hypogonadism in healthy men with graded testosterone add-back either with or without concomitant aromatase inhibitor treatment has in fact suggested that low oestradiol (but not low testosterone) may be responsible for the hypogonadism-associated increase in total body and intra-abdominal fat mass
    • Nathan Goodyear
       
      This does not fit with the research on receptors, specifically estrogen receptors.  These studies that the authors are referencing are looking at "circulating" levels, not tissue levels.
  • A smaller study with a similar experimental design found that acute testosterone withdrawal reduced insulin sensitivity independent of body weight, whereas oestradiol withdrawal had no effects
  • Obesity and dysglycaemia and associated comorbidities such as obstructive sleep apnoea (Hoyos et al. 2012b) are important contributors to the suppression of the HPT axis
  • This is supported by observational studies showing that weight gain and development of diabetes accelerate the age-related decline in testosterone
  • Weight loss can reactivate the hypothalamic–pituitary–testicular axis
  • The hypothalamic–pituitary–testicular axis remains responsive to treatment with aromatase inhibitors or selective oestrogen receptor modulators in obese men
  • Kisspeptin treatment increases LH secretion, pulse frequency and circulating testosterone levels in hypotestosteronaemic men with type 2 diabetes
  • Several observational and randomised studies reviewed in Grossmann (2011) have shown that weight loss, whether by diet or surgery, leads to substantial increases in testosterone, especially in morbidly obese men
  • This suggests that weight loss can lead to genuine reactivation of the gonadal axis by reversal of obesity-associated hypothalamic suppression
  • There is pre-clinical and observational evidence that chronic hyperglycaemia can inhibit the HPT axis
  • in those men in whom glycaemic control worsened, testosterone decreased
  • successful weight loss combined with optimisation of glycaemic control may be sufficient to normalise circulating testosterone levels in the majority of such men
  • weight loss, optimisation of diabetic control and assiduous care of comorbidities should remain the first-line approach.
    • Nathan Goodyear
       
      This obviously goes against marketing-based medicine
  • In part, the discrepant results may be due to the fact men in the Vigen cohort (Vigen et al. 2013) had a higher burden of comorbidities. Given that one (Basaria et al. 2010), but not all (Srinivas-Shankar et al. 2010), RCTs in men with a similarly high burden of comorbidities reported an increase in cardiovascular events in men randomised to testosterone treatment (see section on Testosterone therapy: potential risks below) (Basaria et al. 2010), testosterone should be used with caution in frail men with multiple comorbidities
  • The retrospective, non-randomised and non-blinded design of these studies (Shores et al. 2012, Muraleedharan et al. 2013, Vigen et al. 2013) leaves open the possibility for residual confounding and multiple other sources of bias. These have been elegantly summarised by Wu (2012).
  • Effects of testosterone therapy on body composition were metabolically favourable with modest decreases in fat mass and increases in lean body mass
  • This suggests that testosterone has limited effects on glucose metabolism in relatively healthy men with only mildly reduced testosterone.
  • it is conceivable that testosterone treatment may have more significant effects on glucose metabolism in uncontrolled diabetes, akin to what has generally been shown for conventional anti-diabetic medications.
  • the evidence from controlled studies show that testosterone therapy consistently reduces fat mass and increases lean body mass, but inconsistently decreases insulin resistance.
  • Interestingly, testosterone therapy does not consistently improve glucose metabolism despite a reduction in fat mass and an increase in lean mass
  • the majority of RCTs (recently reviewed in Ng Tang Fui et al. (2013a)) showed that testosterone therapy does not reduce visceral fat
    • Nathan Goodyear
       
      visceral and abdominal adiposity are biologically different and thus the risks associated with the two are different.
    • Nathan Goodyear
       
      yet low T is associated with an increase in visceral adiposity--confusing!
  • testosterone therapy decreases SHBG
  • testosterone is inversely associated with total cholesterol, LDL cholesterol and triglyceride (Tg) levels, but positively associated with HDL cholesterol levels, even if adjusted for confounders
  • Although observational studies show a consistent association of low testosterone with adverse lipid profiles, whether testosterone therapy exerts beneficial effects on lipid profiles is less clear
  • Whereas testosterone-induced decreases in total cholesterol, LDL cholesterol and Lpa are expected to reduce cardiovascular risk, testosterone also decreases the levels of the cardio-protective HDL cholesterol. Therefore, the net effect of testosterone therapy on cardiovascular risk remains uncertain.
  • data have not shown evidence that testosterone causes prostate cancer, or that it makes subclinical prostate cancer grow
  • compared with otherwise healthy young men with organic androgen deficiency, there may be increased risks in older, obese men because of comorbidities and of decreased testosterone clearance
  • recent evidence that fat accumulation may be oestradiol-, rather than testosterone-dependent
Nathan Goodyear

Influence of alpha-lipoic acid on lipid ... [Diabetes Obes Metab. 2004] - PubMed - NCBI - 0 views

  •  
    Numerous deletorious effects are seen in high fructose diets: elevated Triglyceride production, fatty liver, insulin resistance, increased VLDL production and secretion, increased deposit of TG in muscle and increased muscle insulin resistance.  Alpha lipoic Acid is shown to counter these effects in rat model.
Nathan Goodyear

Testosterone and the Cardiovascular System: A Comprehensive Review of the Clinical Lite... - 0 views

  • Low endogenous bioavailable testosterone levels have been shown to be associated with higher rates of all‐cause and cardiovascular‐related mortality.39,41,46–47 Patients suffering from CAD,13–18 CHF,137 T2DM,25–26 and obesity27–28
  • have all been shown to have lower levels of endogenous testosterone compared with those in healthy controls. In addition, the severity of CAD15,17,29–30 and CHF137 correlates with the degree of testosterone deficiency
  • In patients with CHF, testosterone replacement therapy has been shown to significantly improve exercise tolerance while having no effect on LVEF
  • ...66 more annotations...
  • testosterone therapy causes a shift in the skeletal muscle of CHF patients toward a higher concentration of type I muscle fibers
  • Testosterone replacement therapy has also been shown to improve the homeostatic model of insulin resistance and hemoglobin A1c in diabetics26,68–69 and to lower the BMI in obese patients.
  • Lower levels of endogenous testosterone have been associated with longer duration of the QTc interval
  • testosterone replacement has been shown to shorten the QTc interval
  • negative correlation has been demonstrated between endogenous testosterone levels and IMT of the carotid arteries, abdominal aorta, and thoracic aorta
  • These findings suggest that men with lower levels of endogenous testosterone may be at a higher risk of developing atherosclerosis.
  • Current guidelines from the Endocrine Society make no recommendations on whether patients with heart disease should be screened for hypogonadism and do not recommend supplementing patients with heart disease to improve survival.
  • The Massachusetts Male Aging Study also projects ≈481 000 new cases of hypogonadism annually in US men within the same age group
  • since 1993 prescriptions for testosterone, regardless of the formulation, have increased nearly 500%
  • Testosterone levels are lower in patients with chronic illnesses such as end‐stage renal disease, human immunodeficiency virus, chronic obstructive pulmonary disease, type 2 diabetes mellitus (T2DM), obesity, and several genetic conditions such as Klinefelter syndrome
  • A growing body of evidence suggests that men with lower levels of endogenous testosterone are more prone to develop CAD during their lifetimes
  • There are 2 major potential confounding factors that the older studies generally failed to account for. These factors are the subfraction of testosterone used to perform the analysis and the method used to account for subclinical CAD.
  • The biologically inactive form of testosterone is tightly bound to SHBG and is therefore unable to bind to androgen receptors
  • The biologically inactive fraction of testosterone comprises nearly 68% of the total testosterone in human serum
  • The biologically active subfraction of testosterone, also referred to as bioavailable testosterone, is either loosely bound to albumin or circulates freely in the blood, the latter referred to as free testosterone
  • It is estimated that ≈30% of total serum testosterone is bound to albumin, whereas the remaining 1% to 3% circulates as free testosterone
  • it can be argued that using the biologically active form of testosterone to evaluate the association with CAD will produce the most reliable results
  • English et al14 found statistically significant lower levels of bioavailable testosterone, free testosterone, and free androgen index in patients with catheterization‐proven CAD compared with controls with normal coronary arteries
  • patients with catheterization‐proven CAD had statistically significant lower levels of bioavailable testosterone
  • In conclusion, existing evidence suggests that men with CAD have lower levels of endogenous testosterone,13–18 and more specifically lower levels of bioavailable testosterone
  • low testosterone levels are associated with risk factors for CAD such as T2DM25–26 and obesity
  • In a meta‐analysis of these 7 population‐based studies, Araujo et al41 showed a trend toward increased cardiovascular mortality associated with lower levels of total testosterone, but statistical significance was not achieved (RR, 1.25
  • the authors showed that a decrease of 2.1 standard deviations in levels of total testosterone was associated with a 25% increase in the risk of cardiovascular mortality
  • the relative risk of all‐cause mortality in men with lower levels of total testosterone was calculated to be 1.35
  • higher risk of cardiovascular mortality is associated with lower levels of bioavailable testosterone
  • Existing evidence seems to suggest that lower levels of endogenous testosterone are associated with higher rates of all‐cause mortality and cardiovascular mortality
  • studies have shown that lower levels of endogenous bioavailable testosterone are associated with higher rates of all‐cause and cardiovascular mortality
  • It may be possible that using bioavailable testosterone to perform mortality analysis will yield more accurate results because it prevents the biologically inactive subfraction of testosterone from playing a potential confounding role in the analysis
  • The earliest published material on this matter dates to the late 1930s
  • the concept that testosterone replacement therapy improves angina has yet to be proven wrong
  • In more recent studies, 3 randomized, placebo‐controlled trials demonstrated that administration of testosterone improves myocardial ischemia in men with CAD
  • The improvement in myocardial ischemia was shown to occur in response to both acute and chronic testosterone therapy and seemed to be independent of whether an intravenous or transdermal formulation of testosterone was used.
  • testosterone had no effect on endothelial nitric oxide activity
  • There is growing evidence from in vivo animal models and in vitro models that testosterone induces coronary vasodilation by modulating the activity of ion channels, such as potassium and calcium channels, on the surface of vascular smooth muscle cells
  • Experimental studies suggest that the most likely mechanism of action for testosterone on vascular smooth muscle cells is via modulation of action of non‐ATP‐sensitive potassium ion channels, calcium‐activated potassium ion channels, voltage‐sensitive potassium ion channels, and finally L‐type calcium ion channels
  • Corona et al confirmed those results by demonstrating that not only total testosterone levels are lower among diabetics, but also the levels of free testosterone and SHBG are lower in diabetic patients
  • Laaksonen et al65 followed 702 Finnish men for 11 years and demonstrated that men in the lowest quartile of total testosterone, free testosterone, and SHBG were more likely to develop T2DM and metabolic syndrome.
  • Vikan et al followed 1454 Swedish men for 11 years and discovered that men in the highest quartile of total testosterone were significantly less likely to develop T2DM
  • authors demonstrated a statistically significant increase in the incidence of T2DM in subjects receiving gonadotropin‐releasing hormone antagonist therapy. In addition, a significant increase in the rate of myocardial infarction, stroke, sudden cardiac death, and development of cardiovascular disease was noted in patients receiving antiandrogen therapy.67
  • Several authors have demonstrated that the administration of testosterone in diabetic men improves the homeostatic model of insulin resistance, hemoglobin A1c, and fasting plasma glucose
  • Existing evidence strongly suggests that the levels of total and free testosterone are lower among diabetic patients compared with those in nondiabetics
  • insulin seems to be acting as a stimulant for the hypothalamus to secret gonadotropin‐releasing hormone, which consequently results in increased testosterone production. It can be argued that decreased stimulation of the hypothalamus in diabetics secondary to insulin deficiency could result in hypogonadotropic hypogonadism
  • BMI has been shown to be inversely associated with testosterone levels
  • This interaction may be a result of the promotion of lipolysis in abdominal adipose tissue by testosterone, which may in turn cause reduced abdominal adiposity. On the other hand, given that adipose tissue has a higher concentration of the enzyme aromatase, it could be that increased adipose tissue results in more testosterone being converted to estrogen, thereby causing hypogonadism. Third, increased abdominal obesity may cause reduced testosterone secretion by negatively affecting the hypothalamus‐pituitary‐testicular axis. Finally, testosterone may be the key factor in activating the enzyme 11‐hydroxysteroid dehydrogenase in adipose tissue, which transforms glucocorticoids into their inactive form.
  • increasing age may alter the association between testosterone and CRP. Another possible explanation for the association between testosterone level and CRP is central obesity and waist circumference
  • Bai et al have provided convincing evidence that testosterone might be able to shorten the QTc interval by augmenting the activity of slowly activating delayed rectifier potassium channels while simultaneously slowing the activity of L‐type calcium channels
  • consistent evidence that supplemental testosterone shortens the QTc interval.
  • Intima‐media thickness (IMT) of the carotid artery is considered a marker for preclinical atherosclerosis
  • Studies have shown that levels of endogenous testosterone are inversely associated with IMT of the carotid artery,126–128,32,129–130 as well as both the thoracic134 and the abdominal aorta
  • 1 study has demonstrated that lower levels of free testosterone are associated with accelerated progression of carotid artery IMT
  • another study has reported that decreased levels of total and bioavailable testosterone are associated with progression of atherosclerosis in the abdominal aorta
  • These findings suggest that normal physiologic testosterone levels may help to protect men from the development of atherosclerosis
  • Czesla et al successfully demonstrated that the muscle specimens that were exposed to metenolone had a significant shift in their composition toward type I muscle fibers
  • Type I muscle fibers, also known as slow‐twitch or oxidative fibers, are associated with enhanced strength and physical capability
  • It has been shown that those with advanced CHF have a higher percentage of type II muscle fibers, based on muscle biopsy
  • Studies have shown that men with CHF suffer from reduced levels of total and free testosterone.137 It has also been shown that reduced testosterone levels in men with CHF portends a poor prognosis and is associated with increased CHF mortality.138 Reduced testosterone has also been shown to correlate negatively with exercise capacity in CHF patients.
  • Testosterone replacement therapy has been shown to significantly improve exercise capacity, without affecting LVEF
  • the results of the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not cause an increase in the rate of adverse cardiovascular events
  • Data from 3 meta‐analyses seem to contradict the commonly held belief that testosterone administration may increase the risk of developing prostate cancer
  • One meta‐analysis reported an increase in all prostate‐related adverse events with testosterone administration.146 However, when each prostate‐related event, including prostate cancer and a rise in PSA, was analyzed separately, no differences were observed between the testosterone group and the placebo group
  • the existing data from the 3 meta‐analyses seem to indicate that testosterone replacement therapy does not increase the risk of adverse cardiovascular events
  • the authors correctly point out the weaknesses of their study which include retrospective study design and lack of randomization, small sample size at extremes of follow‐up, lack of outcome validation by chart review and poor generalizability of the results given that only male veterans with CAD were included in this study
    • Nathan Goodyear
       
      The authors here present Total Testosterone as a "confounding" value
    • Nathan Goodyear
       
      This would be HSD-II
  • the studies that failed to find an association between testosterone and CRP used an older population group
  • low testosterone may influence the severity of CAD by adversely affecting the mediators of the inflammatory response such as high‐sensitivity C‐reactive protein, interleukin‐6, and tumor necrosis factor–α
  •  
    Good review of Testosterone and CHD.  Low T is associated with increased all cause mortality and cardiovascular mortality, CAD, CHF, type II diabetes, obesity, increased IMT,  increased severity of CAD and CHF.  Testosterone replacement in men with low T has been shown to improve exercise tolerance in CHF, improve insulin resistance, improve HgbA1c and lower BMI in the obese.
Nathan Goodyear

Therapy in the Early Stage: Incretins - 0 views

  • Increased resistance to insulin action in the skeletal muscle and liver associated with enhanced hepatic glucose output and impaired insulin secretion due to a progressive decline of β-cell function are long-recognized core defects
  • in addition, other mechanisms/organs are involved, augmenting the pathological pathways: adipocytes (altered fat metabolism due to insulin resistance), gastrointestinal tract (incretin deficiency and/or resistance), pancreatic α-cells (hyperglucagonemia and increased hepatic sensitivity to glucagon), kidneys (enhanced glucose reabsorption), and central nervous system (insulin resistance)
  • β-cell failure
    • Nathan Goodyear
       
      and studies have shown that a reduction in insulin function will decrease LH production and thus lead to a decrease in Testosterone production in men.
  • ...2 more annotations...
  • Incretins are gut-derived hormones, members of the glucagon superfamily, released in response to nutrient ingestion (mainly glucose and fat)
  • They exert a wide range of effects, including stimulation of pancreatic insulin secretion in a glucose-dependent manner and play an important role in the local gastrointestinal and whole-body physiology
  •  
    good discussion on incretins and their role in glucose homeostasis. 
Nathan Goodyear

The expanding role of incretin-based therapies: how much should we expect? - 0 views

  • The incretins are peptide hormones released from the small intestine during meal absorption that stimulate insulin secretion from pancreatic β-cells and reduce excessive secretion of glucagon by pancreatic α-cells
  •  
    intro to incretins
Nathan Goodyear

A strong association between biologically active testosterone and leptin in non-obese m... - 0 views

  • strongly supports an association between levels of androgens and leptin in both men and women
  • The association between androgen levels and leptin seems to be dependent of fat distribution in men
  • There is a growing bulk of evidence suggesting that testosterone may influence leptin levels. Testosterone administration reduces leptin levels in hypogonadal27,28 and eugonadal men
  • ...5 more annotations...
  • testosterone suppression by GnRH agonist treatment of central precocious puberty in boys increases leptin levels
  • Testosterone levels decreased with increasing central obesity in healthy men, while they increase with increasing obesity in healthy women, the latter irrespective of menstrual status
  • this could be due to obesity-related hyperleptinemia that inhibits testosterone secretion at the testicular level.46,47 These changes, which are proposed to be components of the insulin resistance syndrome,48 are associated with increased risk for cardiovascular disease in both men and women
  • in the more obese subjects, the higher leptin levels due to increased adiposity might reduce secretion of testosterone
  • loss of regulation of leptin by testosterone in obese men and women could be an important feature of the insulin resistance syndrome
  •  
    Leptin and Testosterone.  Interesting relationship that differs between the sexes.
Nathan Goodyear

Glutamate release promotes growth of malignant gli... [Nat Med. 2001] - PubMed result - 0 views

  •  
    some tumors, glioblastoma multiforme, secrete glutamate, which increases aggressive nature of cancer
Nathan Goodyear

Benzodiazepines inhibit thyrotropin (TSH)-releasin... [Endocrinology. 1986] - PubMed re... - 0 views

  •  
    benzodiazepines inhibit TSH secretion
Nathan Goodyear

ScienceDirect - Journal of Psychiatric Research : Neuroendocrine effects of S-adenosyl-... - 0 views

  • Our results, at least in depressed men, seem to support the hypothesis of a stimulating effect of SAMe on the dopaminergic system
  •  
    SAMe stimulates dopamine secretion in depressed men
Nathan Goodyear

International Journal of Obesity - Antiobesity action of peripheral exenatide (exendin-... - 0 views

  • Systemic exenatide reduces body weight gain in normal, high-fat-fed rodents
  • role in metabolic pathways mediating food intake.
  • the first of which to be identified was an enhancement of glucose-dependent insulin secretion
  • ...5 more annotations...
  • limits glucose appearance via glucose-dependent slowing of gastric emptying
  • suppression of inappropriately elevated postprandial glucagon secretion
  • promote pancreatic -cell proliferation and islet cell neogenesis in both animal and in vitro studies
  • short-term regulator of food intake
  • eceptor agonism in satiety
  •  
    exanatide helps in obesity and fatty liver treatment
Nathan Goodyear

Effect of training status and exercise mode on endogenous steroid hormones in men - 0 views

  •  
    decreased testosterone production/secretion in men post exercise. This was more pronounced in resistance training versus endurance training.
Nathan Goodyear

Diagnosing Growth Hormone Deficiency in Adults - 0 views

  • it is clear that serum IGF-1 and or IGFBP-3 can be normal in patients with undisputed GHD
  • Various investigators have reported normal IGF-1 values in 37–70% of GH deficient adults
  • The co-administration of arginine and GHRH (the combined test) is a powerful stimulus for GH production and has gained increasing acceptance as a useful method of diagnosing GHD [34]. This test has been advocated as a suitable alternative to ITT
  • ...12 more annotations...
  • The glucagon stimulation test (GST) is a reliable, safe alternative to the ITT in the diagnosis of GHD
  • An intravenous infusion of arginine (0.5 g/kg body weight) together with an intravenous bolus of GHRH (1 mcg/kg body weight) is administered [30]. Serum samples for GH are then obtained every 15–30 minutes for two hours.
  • Obesity, particularly marked obesity, is associated with blunted GH secretion in response to provocative stimuli
  • It has also been suggested that that even mildly increased BMI (25–30 kg/m2) can result in diminished stimulated GH production in 13% of healthy subjects
  • Corneli et al. have defined BMI-specific cut-off points for diagnosing adult-onset GHD using GHRH + arginine—11.5 ng/mL for those with BMI < 25 kg/m2, 8.0 ng/mL for BMI 25–30 kg/m2, 4.2 ng/mL for those with BMI > 30 kg/m2
  • GH levels are higher during the luteal phase in comparison with the follicular phase of the cycle
  • Oral, in contrast to transdermal oestrogen, lowers IGF-1 levels and is associated with increased GH levels
  • Adequate pituitary replacement with thyroxine and hydrocortisone are needed for optimal GH production
  • one cannot rely on a low IGF-1 to diagnose GHD in women taking oral oestrogen preparations.
  • Numerous GH secretagogues are available with the insulin tolerance test being the gold standard and the glucagon stimulation test or the GHRH + arginine as acceptable alternatives
  • ain et al. found the GST to be at least as good as the ITT in provoking GH secretion
  • the GST is safe, with almost no contraindications, it causes nausea and sometimes vomiting in 15–20% of subjects
  •  
    Nice, more recent analysis, of HGH testing.
Nathan Goodyear

Hormonal response to L-arginine supplementation in physically active individuals - 0 views

  •  
    Small study finds that Arginine supplementation has no effect on HGH, IGF-1, and insulin secretion in runners.
Nathan Goodyear

The kisspeptin-GnRH pathway in human reproductive health and disease - 0 views

  • Kisspeptin stimulates LH secretion in healthy men (filled squares) and women
  • This raises the possibility that diminished kisspeptin secretion is a potential mechanism for hypogonadotropic hypogonadism in patients with obesity and diabetes
  • The likely pathways for down-regulation of kisspeptin signalling include negative feedback by estrogen, which is markedly elevated in obesity (Schneider et al., 1979), resistance to leptin, also seen in human obesity (Finn et al., 1998), insulin resistance and hyperglycaemia (Castellano et al., 2006, 2009), and inflammation, which is up-regulated in hypogonadal men with diabetes (Dandona et al., 2008) and is associated with decreased kisspeptin expression in rats
  •  
    Very nice, updated review of kisspeptins, hormone production and the negative/positive effects of kisspeptins.
Nathan Goodyear

Role of Oxidative Stress and the Microenvironment in Breast Cancer Development and Prog... - 0 views

  • oxidative stress leads to HIF-1α accumulation
  • Oxidative stress generated by breast cancer cells activates HIF-1α and NFκB in fibroblasts, leading to autophagy and lysosomal degradation of Cav-1
  • increased levels of hydrogen peroxide in exhaled breath condensate from patients with localized breast malignancy, associated with increased clinical severity
  • ...18 more annotations...
  • Comparing mitochondrial metabolic activity revealed a difference between stroma and epithelial cells
  • Overexpression of NOX4 in normal breast epithelial cells results in cellular senescence, resistance to apoptosis, and tumorigenic transformation, as well as increased aggressiveness of breast cancer cells
  • metalloproteinases (MMP) such as MMP-2, MMP-3, and MMP-9 increase extracellular matrix turnover and are themselves activated by oxidative stress
  • Lowered expression of Cav-1 not only leads to myofibroblast conversion and inflammation but also seems to impact aerobic glycolysis, leading to secretion of high energy metabolites such as pyruvate and lactate that drive mitochondrial oxidative phosphorylation in cancer cells
  • Reverse Warburg Effect
  • secreted transforming growth factor β (TGFβ), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF), fibroblast growth factor 2, and stromal-derived factor 1 (SDF1) are able to activate fibroblasts and increase cancer cell proliferation
  • oxidative stress has an important role in the initiation and preservation of breast cancer progression
  • cancer preventive role of healthy mitochondria
  • the cancer cells produce hydrogen peroxide and by driving the “Reverse Warburg Effect” initiate oxidative stress in fibroblasts. As a result of this process, fibroblasts exhibited reduced mitochondrial activity, increased glucose uptake, ROS, and metabolite production.
  • Oxidative stress results from an imbalance between unstable reactive species lacking one or more unpaired electrons (superoxide anion, hydrogen peroxide, hydroxyl radical, reactive nitrogen species) and antioxidants
  • cancer cells are able to induce drivers of oxidative stress, autophagy and mitophagy: HIF-1α and NFκB in surrounding stroma fibro-blasts
  • Studies show that loss of Cav-1 in adjacent breast cancer stroma fibroblasts can be prevented by treatment with N-acetyl cysteine, quercetin, or metformin
  • However, diets rich in antioxidants have fallen short in sufficiently preventing cancer
  • hydrogen peroxide is one of the main factors that can push fibroblasts and cancer cells into senescence
  • It is widely held that HIF-1α function is dependent upon its location within the tumor microenvironment. It acts as a tumor promoter in CAFs and as a tumor suppressor in cancer cells
  • It was reported that overexpression of recombinant (SOD2) (Trimmer et al., 2011) or injection of SOD, catalase, or their pegylated counterparts can block recurrence and metastasis in mice
  • obstructing oxidative stress in the tumor microenvironment can lead to mitophagy and promote breast cancer shutdown is a promising discovery for the development of future therapeutic interventions.
  • Recent studies show that in the breast cancer microenvironment, oxidative stress causes mitochondrial dysfunction
  •  
    Really fascinating article on tumor signaling. The article points to a complex signaling between cancer cells and stromal fibroblasts that results in myofibroblast transformation that increases the microenvironment favorability of cancer. This article points to oxidative stress as the primary driving force.  
Nathan Goodyear

Renin-angiotensin system and cancer: A review - 0 views

  • crucial role of the RAS in the development and maintenance of cancer
  • kidneys, which produce renin in response to decreased arterial pressure, reduced sodium in the distal tubule, or sympathetic nervous system activity via the β-adrenergic receptors
  • Renin is secreted from the juxtaglomerular cells into the bloodstream where it encounters angiotensinogen (AGN), normally produced by the liver
  • ...22 more annotations...
  • Renin catalyses the conversion of AGN to angiotensin I (ATI), which is quickly cleaved by angiotensin converting enzyme (ACE) to form angiotensin II (ATII)
  • ATII triggers the release of aldosterone from the adrenal glands, which stimulates reabsorption of sodium and water and thereby increases blood volume and blood pressure
  • ATII also acts on smooth muscle to cause vasoconstriction of the arterioles
  • ATII promotes the release of antidiuretic hormone from the posterior pituitary gland, which results in water retention and triggers the thirst reflex
  • ability of non-CSCs to ‘de-differentiate’ into CSCs due to epigenetic or environmental factors, which further increases the complexity of tumour biology and treatment
  • efficacy of RAS modulators on cancer in both cancer models and cancer patients
  • A localised (‘paracrine’) RAS mechanism has been identified in many types of cancers, and interruption of the control of the RAS is thought to be the basis for its role in cancer
  • Components of the RAS are expressed by these CSCs, supporting the hypothesis of the presence of a ‘paracrine RAS’ in regulating these CSCs
  • Renin is an enzyme normally released by the kidneys in response to falling arterial pressure
  • a study of GBM demonstrating overexpression of PRR coupled with the observation that inhibition of renin reduces cellular proliferation and promotes apoptosis
  • PRR has been found to be vital for normal Wnt signalling
  • A major focus of PRR research is its relationship with Wnt signalling
  • suggest a crucial role for PRR activation on the proliferation of CSCs, possibly via Wnt/β-catenin signalling, leading to carcinogenesis.
  • Angiotensin converting enzyme (ACE), also known as CD143, is the endothelial-bound peptidase which physiologically converts ATI to ATII
  • ACE is crucial in the regulation of blood pressure, angiogenesis and inflammation
  • results suggest that an overactive ACE promotes cancer growth and progression, and an inhibited or low-activity ACE may have cancer-protective effects
  • When bound to ATII or ATIII it causes vasoconstriction by stimulating the release of vasopressin, reabsorption of water and sodium by promoting secretion of aldosterone and insulin, fibrosis, cellular growth and migration, pro-inflammation, glucose release from the liver, increased plasma triglyceride concentration, and reduced gluconeogenesis
  • ATIIR1 is a G-protein-coupled receptor, with downstream signalling involved in vasodilation, hypertrophy and NF-κB activation leading to TNF-α and PAI-1 expression
  • ATIIR1 has well-documented links with cancer, with one study demonstrating its overexpression in ~20% of breast cancer patients
  • the effect of RAS dysregulation has been associated with increased VEGF expression and angiogenesis in cancers
  • In ovarian and cervical cancer, ATIIR1 overexpression has been shown to be an indicator of tumour invasiveness
  • administration of ATIIR1 blockers (ARBs) have been associated with reduced tumour size, reduction in tumour vascularisation, lower occurrence of metastases, and lower VEGF levels
  •  
    Great review on RAS in cancer.
« First ‹ Previous 41 - 60 of 156 Next › Last »
Showing 20 items per page