Skip to main content

Home/ Dr. Goodyear/ Group items tagged phosphocreatine

Rss Feed Group items tagged

Nathan Goodyear

Creatine and Phosphocreatine: A Review of Their Use in Exercise and Sport - 0 views

  •  
    phosphocreatine and athletics.
Nathan Goodyear

The effects of creatine supplementation o... [Eur J Appl Physiol. 2004] - PubMed - NCBI - 0 views

  •  
    phosphocreatine helps to maintains muscular performance.  This appears to be an early benefit.  The question is does this help in prolonged performance requirements.
Nathan Goodyear

Creatine supplementation during college foo... [Mol Cell Biochem. 2003] - PubMed - NCBI - 0 views

  •  
    phosphocreatine supplementation in Division 1A football players found to have no increased incidence of cramping or other injuries.
Nathan Goodyear

Effect of creatine supplementat... [Int J Sport Nutr Exerc Metab. 2003] - PubMed - NCBI - 0 views

  •  
    phosphocreatine increases lead body mass.
Nathan Goodyear

Effects of creatine supplementation on perf... [Mol Cell Biochem. 2003] - PubMed - NCBI - 0 views

  •  
    review of the literature at the time found the majority of studies showed positive results with phosphocreatine supplementation.
Nathan Goodyear

The nutritional biochemistry of creatine - 0 views

  •  
    Loading dose of creatine, 20 grams/day, over 5-6 days increases total muscle creatine levels.  This has been shown to improve athletic performance.  The phosphocreatine  in Type II muscle fibers are particularly increased.  This can be maintained at 2 grams/day.
Nathan Goodyear

JISSN | Full text | International Society of Sports Nutrition position stand: creatine ... - 0 views

  • the energy supplied to rephosphorylate adenosine diphosphate (ADP) to adenosine triphosphate (ATP) during and following intense exercise is largely dependent on the amount of phosphocreatine (PCr) stored in the muscle
  • Creatine is chemically known as a non-protein nitrogen
  • It is synthesized in the liver and pancreas from the amino acids arginine, glycine, and methionine
  • ...26 more annotations...
  • Approximately 95% of the body's creatine is stored in skeletal muscle
  • About two thirds of the creatine found in skeletal muscle is stored as phosphocreatine (PCr) while the remaining amount of creatine is stored as free creatine
  • The body breaks down about 1 – 2% of the creatine pool per day (about 1–2 grams/day) into creatinine in the skeletal muscle
  • The magnitude of the increase in skeletal muscle creatine content is important because studies have reported performance changes to be correlated to this increase
  • "loading" protocol. This protocol is characterized by ingesting approximately 0.3 grams/kg/day of CM for 5 – 7 days (e.g., ≃5 grams taken four times per day) and 3–5 grams/day thereafter [18,22]. Research has shown a 10–40% increase in muscle creatine and PCr stores using this protocol
  • Additional research has reported that the loading protocol may only need to be 2–3 days in length to be beneficial, particularly if the ingestion coincides with protein and/or carbohydrate
  • A few studies have reported protocols with no loading period to be sufficient for increasing muscle creatine (3 g/d for 28 days)
  • Cycling protocols involve the consumption of "loading" doses for 3–5 days every 3 to 4 weeks
  • Most of these forms of creatine have been reported to be no better than traditional CM in terms of increasing strength or performance
  • Recent studies do suggest, however, that adding β-alanine to CM may produce greater effects than CM alone
  • These investigations indicate that the combination may have greater effects on strength, lean mass, and body fat percentage; in addition to delaying neuromuscular fatigue
  • creatine phosphate has been reported to be as effective as CM at improving LBM and strength
  • Green et al. [24] reported that adding 93 g of carbohydrate to 5 g of CM increased total muscle creatine by 60%
  • Steenge et al. [23] reported that adding 47 g of carbohydrate and 50 g of protein to CM was as effective at promoting muscle retention of creatine as adding 96 g of carbohydrate.
  • It appears that combining CM with carbohydrate or carbohydrate and protein produces optimal results
  • Studies suggest that increasing skeletal muscle creatine uptake may enhance the benefits of training
  • Nearly 70% of these studies have reported a significant improvement in exercise capacity,
  • Long-term CM supplementation appears to enhance the overall quality of training, leading to 5 to 15% greater gains in strength and performance
  • Nearly all studies indicate that "proper" CM supplementation increases body mass by about 1 to 2 kg in the first week of loading
  • short-term adaptations reported from CM supplementation include increased cycling power, total work performed on the bench press and jump squat, as well as improved sport performance in sprinting, swimming, and soccer
  • Long-term adaptations when combining CM supplementation with training include increased muscle creatine and PCr content, lean body mass, strength, sprint performance, power, rate of force development, and muscle diameter
  • subjects taking CM typically gain about twice as much body mass and/or fat free mass (i.e., an extra 2 to 4 pounds of muscle mass during 4 to 12 weeks of training) than subjects taking a placebo
  • The gains in muscle mass appear to be a result of an improved ability to perform high-intensity exercise via increased PCr availability and enhanced ATP synthesis, thereby enabling an athlete to train harder
  • there is no evidence to support the notion that normal creatine intakes (< 25 g/d) in healthy adults cause renal dysfunction
  • no long-term side effects have been observed in athletes (up to 5 years),
  • One cohort of patients taking 1.5 – 3 grams/day of CM has been monitored since 1981 with no significant side effects
  •  
    Nice review of the data, up to the publication date, on creatine.
Nathan Goodyear

Vitamin D, Mitochondria, and Muscle - 0 views

  •  
    editorial discussion of the benefit of vitamin D in mitochondrial function.   Those in the vitamin D repletion arm of the study had a quicker recovery time to restored phospho-creatinine levels.  The quicker the recovery of phospho-creatinine levels, the shorter recovery phase and the likely improvement in athletic performance.
Nathan Goodyear

Stuck at the bench: Potential natural neuroprotective compounds for concussion - 0 views

  • Long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are highly enriched in neuronal synaptosomal plasma membranes and vesicles
  • The predominant CNS polyunsaturated fatty acid is DHA
  • effective supplementation and/or increased ingestion of dietary sources rich in EPA and DHA, such as cold-water fish species and fish oil, may help improve a multitude of neuronal functions, including long-term potentiation and cognition.
  • ...45 more annotations...
  • multiple preclinical studies have suggested that DHA and/or EPA supplementation may have potential benefit through a multitude of diverse, but complementary mechanisms
  • pre-injury dietary supplementation with fish oil effectively reduces post-traumatic elevations in protein oxidation
  • The benefits of pre-traumatic DHA supplementation have not only been independently confirmed,[150] but DHA supplementation has been shown to significantly reduce the number of swollen, disconnected and injured axons when administered following traumatic brain injury.
  • DHA has provided neuroprotection in experimental models of both focal and diffuse traumatic brain injury
  • potential mechanisms of neuroprotection, in addition to DHA and EPA's well-established anti-oxidant and anti-inflammatory properties
  • Despite abundant laboratory evidence supporting its neuroprotective effects in experimental models, the role of dietary DHA and/or EPA supplementation in human neurological diseases remains uncertain
  • Several population-based, observational studies have suggested that increased dietary fish and/or omega-3 polyunsaturated fatty acid consumption may reduce risk for ischemic stroke in several populations
  • Randomized control trials have also demonstrated significant reductions in ischemic stroke recurrence,[217] relative risk for ischemic stroke,[2] and reduced incidence of both symptomatic vasospasm and mortality following subarachnoid hemorrhage
  • Clinical trials in Alzheimer's disease have also been largely ineffective
  • The clinical evidence thus far appears equivocal
  • curcumin has gained much attention from Western researchers for its potential therapeutic benefits in large part due to its potent anti-oxidant[128,194,236] and anti-inflammatory properties
  • Curcumin is highly lipophilic and crosses the blood-brain barrier enabling it to exert a multitude of different established neuroprotective effects
  • in the context of TBI, a series of preclinical studies have suggested that pre-traumatic and post-traumatic curcumin supplementation may bolster the brain's resilience to injury and serve as a valuable therapeutic option
  • Curcumin may confer significant neuroprotection because of its ability to act on multiple deleterious post-traumatic, molecular cascades
  • studies demonstrated that both pre- and post-traumatic curcumin administration resulted in a significant reduction of neuroinflammation via inhibition of the pro-inflammatory molecules interleukin 1β and nuclear factor kappa B (NFκB)
  • no human studies have been conducted with respect to the effects of curcumin administration on the treatment of TBI, subarachnoid or intracranial hemorrhage, epilepsy or stroke
  • studies have demonstrated that resveratrol treatment reduces brain edema and lesion volume, as well as improves neurobehavioral functional performance following TBI
  • green tea consumption or supplementation with its derivatives may bolster cognitive function acutely and may slow cognitive decline
  • At least one population based study, though, did demonstrate that increased green tea consumption was associated with a reduced risk for Parkinson's disease independent of total caffeine intake
  • a randomized, placebo-controlled trial demonstrated that administration of green tea extract and L-theanine, over 16 weeks of treatment, improved indices of memory and brain theta wave activity on electroencephalography, suggesting greater cognitive alertness
  • Other animal studies have also demonstrated that theanine, another important component of green tea extract, exerts a multitude of neuroprotective benefits in experimental models of ischemic stroke,[63,97] Alzheimer's disease,[109] and Parkinson's disease
  • Theanine, like EGCG, contains multiple mechanisms of neuroprotective action including protection from excitotoxic injury[97] and inhibition of inflammation
  • potent anti-oxidant EGCG which is capable of crossing the blood-nerve and blood-brain barrier,
  • Epigallocatechin-3-gallate also displays neuroprotective properties
  • More recent research has suggested that vitamin D supplementation and the prevention of vitamin D deficiency may serve valuable roles in the treatment of TBI and may represents an important and necessary neuroprotective adjuvant for post-TBI progesterone therapy
  • Progesterone is one of the few agents to demonstrate significant reductions in mortality following TBI in human patients in preliminary trials
  • in vitro and in vivo studies have suggested that vitamin D supplementation with progesterone administration may significantly enhance neuroprotection
  • Vitamin D deficiency may increase inflammatory damage and behavioral impairment following experimental injury and attenuate the protective effects of post-traumatic progesterone treatment.[37]
  • emerging evidence has suggested that daily intravenous administration of vitamin E following TBI significantly decreases mortality and improves patient outcomes
  • high dose vitamin C administration following injury stabilized or reduced peri-lesional edema and infarction in the majority of patients receiving post-injury treatment
  • it has been speculated that combined vitamin C and E therapy may potentiate CNS anti-oxidation and act synergistically with regards to neuroprotection
  • one prospective human study has found that combined intake of vitamin C and E displays significant treatment interaction and reduces the risk of stroke
  • Pycnogenol has demonstrated the ability to slow or reduce the pathological processes associated with Alzheimer's disease
  • Pcynogenol administration, in a clinical study of elderly patients, led to improved cognition and reductions in markers of lipid peroxidase
  • One other point of consideration is that in neurodegenerative disease states like Alzheimer's disease and Parkinson's disease, where there are high levels of reactive oxygen species generation, vitamin E can tend to become oxidized itself. For maximal effectiveness and to maintain its anti-oxidant capacity, vitamin E must be given in conjunction with other anti-oxidants like vitamin C or flavonoids
  • These various factors might account for the null effects of alpha-tocopherol supplementation in patients with MCI and Alzheimer's disease
  • preliminary results obtained in a pediatric population have suggested that post-traumatic oral creatine administration (0.4 g/kg) given within four hours of traumatic brain injury and then daily thereafter, may improve both acute and long-term outcomes
  • Acutely, post-traumatic creatine administration seemed to reduce duration of post-traumatic amnesia, length of time spent in the intensive care unit, and duration of intubation
  • At three and six months post-injury, subjects in the creatine treatment group demonstrated improvement on indices of self care, communication abilities, locomotion, sociability, personality or behavior and cognitive function when compared to untreated controls
  • patients in the creatine-treatment group were less likely to experience headaches, dizziness and fatigue over six months of follow-up
  • CNS creatine is derived from both its local biosynthesis from the essential amino acids methionine, glycine and arginine
  • Studies of patients with CNS creatine deficiency and/or murine models with genetic ablation of creatine kinase have consistently demonstrated significant neurological impairment in the absence of proper creatine, phosphocreatine, or creatine kinase function; thus highlighting its functional importance
  • chronic dosing may partially reverse neurological impairments in human CNS creatine deficiency syndromes
  • Several studies have suggested that creatine supplementation may also reduce oxidative DNA damage and brain glutamate levels in Huntington disease patients
  • Another study highlighted that creatine supplementation marginally improved indices of mood and reduced the need for increased dopaminergic therapy in patients with Parkinson's disease
  •  
    great review of natural therapies in the treatment of concussions
1 - 9 of 9
Showing 20 items per page