Skip to main content

Home/ Dr. Goodyear/ Group items tagged levels

Rss Feed Group items tagged

spineneuro

Top Minimally Invasive Spine Surgeon Mumbai India Raising Care in India to A New Level - 0 views

  •  
    Top minimally invasive spine surgeon Mumbai India is willing to serve you with the best medical assistance to help you to ease your chronic back pain. The cost of robotic spine surgery in India is turning very affordable. Please call: +91-9325887033 Email id: enquiry@spineandneurosurgeryhospitalindia.com
spineneuro

Top 10 Kyphosis Specialists in India Offers Incredible Level of Precision - 0 views

  •  
    Kyphosis surgery success rate score of 96 and patient recommendation rating of 97 out of 100. Connect with us Call us at +91-9325887033 directly write to Doctor: enquiry@spineandneurosurgeryhospitalindia.com
spineneuro

বাংলাদেশ স্বাস্থ্য নিউজ আপডেট - সংবাদ মাধ্যম: সেরা রোবোটিক মেরুদণ্ডের সার্জার... - 0 views

  •  
    ডাঃ মিহির বাপট ভারতের ন্যূনতম আক্রমণাত্মক অস্ত্রোপচারের জন্য শীর্ষস্থানীয় মেরুদণ্ডের সার্জনদের একজন। তিনি ন্যূনতম আক্রমণাত্মক মেরুদণ্ডের অস্ত্রোপচারের চিকিত্সার পাশাপাশি জটিল প্রচলিত মেরুদণ্ডের অস্ত্রোপচারের একটি বিশেষত্ব তৈরি করেন।
spineneuro

أفضل جراحة روبوتية للعمود الفقري ترفع رعاية جراحة العمود الفقري في الهند إلى ... - 0 views

  •  
    الهند هي وجهة متخصصة لأفضل جراحة روبوتية في العمود الفقري. تكلفة الإجراء في الهند ميسورة التكلفة وجزءًا بسيطًا مما تدفعه عادةً في الدول الغربية المتقدمة.
Nathan Goodyear

NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond - PMC - 0 views

  • Pneumonia is a typical symptom of COVID-19 infection, while acute respiratory distress syndrome (ARDS) and multiple organ failure are common in severe COVID-19 patients
  • Another indirect route of SARS-CoV-2-induced NET production is platelet activation
  • SARS-CoV-2 infection has also been linked to increased neutrophil-to-lymphocyte ratios, which is associated with disease severity and clinical prognosis
  • ...40 more annotations...
  • NETosis is a special form of programmed cell death in neutrophils, which is characterized by the extrusion of DNA, histones, and antimicrobial proteins in a web-like structure known as neutrophil extracellular traps (NETs)
    • Nathan Goodyear
       
      Definition
  • increased generation of reactive oxygen species (ROS) is a crucial intracellular process that causes NETosis
  • NETs are important for preventing pathogen invasion, their excessive formation can result in a slew of negative consequences, such as autoimmune inflammation and tissue damage
  • When NETs are activated in the circulation, they can also induce hypercoagulability and thrombosis
  • In COVID-19, major NET protein cargos of NETs (i.e., NE, MPO, and histones) are significantly elevated.
  • SARS-CoV-2 can also infect host cells through noncanonical receptors such as C-type lectin receptors
  • Immunopathological manifestations, including cytokine storms and impaired adaptive immunity, are the primary drivers behind COVID-19, with neutrophil infiltration being suggested as a significant cause
  • NETosis, leading to aberrant immunity such as cytokine storms, autoimmune disorders, and immunosuppression.
  • SARS-CoV-2 and its components (e.g., spike proteins and viral RNA) attach to platelets and increase their activation and aggregation in COVID-19, resulting in vascular injury and thrombosis, both of which are linked to NET formation
    • Nathan Goodyear
       
      Connects SARS-CoV-2 to TLR on Platelets to NETosis to metastasis.
  • NET formation may be caused by activated platelets rather than SARS-CoV-2 itself
  • NETosis and NETs are increasingly recognized as causes of vascular injury
  • early bacterial coinfections were more prevalent in COVID-19 patients than those infected with other viruses
  • NETosis and NETs may also have a role in the development of post COVID-19 syndromes, including lung fibrosis, neurological disorders, tumor growth, and worsening of concomitant disease
    • Nathan Goodyear
       
      NETosis-> tumor growth
  • NETs and other by-products of NETosis have been shown to act as direct inflammation amplifiers. Hyperinflammation
  • “cytokine storm”
  • SARS-CoV-2 drives NETosis and NET formation to allow for the release of free DNA and by-products (e.g., elastases and histones). This may trigger surrounding macrophages and endothelial cells to secrete excessive proinflammatory cytokines and chemokines, which, in turn, enhance NET formation and form a positive feedback of cytokine storms in COVID-19
    • Nathan Goodyear
       
      Cycle of hyperinflammation
  • NET release enables self-antigen exposure and autoantibody production, thereby increasing the autoinflammatory response
  • patients with COVID-19 who have higher anti-NET antibodies are more likely to be detected with positive autoantibodies [e.g., antinuclear antibodies (ANA) and anti-neutrophil cytoplasmic antibodies (ANCA)]
  • can enhance this process by interacting with neutrophils through toll-like receptor 4 (TLR4), platelet factor 4 (PF4), and extracellular vesicle-dependent processes
  • have weakened adaptive immunity as well as a high level of inflammation
    • Nathan Goodyear
       
      Immunomodulation
  • tumor-associated NETosis and NETs promote an immunosuppressive environment in which anti-tumor immunity is compromised
  • NETs have also been shown to enhance macrophage pyroptosis in sepsis
  • facilitating an immunosuppressive microenvironment
  • persistent immunosuppression may result in bacterial co-infection or secondary infection
  • COVID-19 NETs may act as potential inducers for autoimmune responses
  • NET-induced immunosuppression in COVID-19 in the context of co-existing bacterial infection
  • Following initial onset of COVID-19, an estimated 50% or more of COVID-19 survivors may develop multi-organ problems (e.g., pulmonary dysfunction and neurologic impairment) or have worsening concomitant chronic illness
  • NETs in the bronchoalveolar lavage fluid of severe COVID-19 patients cause EMT in lung epithelial cells
  • decreased E-cadherin (an epithelial marker) expression
    • Nathan Goodyear
       
      Leads to emt
  • COVID-19 also has a long-term influence on tumor progression
  • Patients with tumors have been shown to be more vulnerable to SARS-CoV-2 infection and subsequent development of severe COVID-19
  • patients who have recovered from COVID-19 may have an increased risk of developing cancer or of cancer progression and metastasis
  • awaken cancer cells
  • NETs have been shown to change the tumor microenvironment
  • enhance tumor progression and metastasis
  • vitamin C has been tested in phase 2 clinical trials aimed at reducing COVID-19-associated mortality by reducing excessive activation of the inflammatory response
  • vitamin C is an antioxidant that significantly attenuates PMA-induced NETosis in healthy neutrophils by scavenging ROS
  • vitamin C may also inhibit NETosis and NET production in COVID-19
  • Metformin
  • Vitamin C
  •  
    NETosis intimately involved in progressive COVID, long COVID, autoimmunity, and cancer
Nathan Goodyear

Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? - PMC - 0 views

  •  
    Vitamin levels decreased in the critically ill. https://t.me/amsterdamdarkmarket
Nathan Goodyear

High-Dose Vitamin C for Cancer Therapy - PMC - 0 views

  • diabetes [8], atherosclerosis [9], the common cold [10], cataracts [11], glaucoma [12], macular degeneration [13], stroke [14], heart disease [15], COVID-19 [16], and cancer.
  • 1–5% of the Vit-C inside the human cells
  • interaction between Fe(II) and H2O2 produces OH− through the Fenton reaction
  • ...35 more annotations...
  • metabolic activity, oxygen transport, and DNA synthesis
  • Iron is found in the human body in the form of haemoglobin in red blood cells and growing erythroid cells.
  • macrophages contain considerable quantities of iron
  • iron is taken up by the majority of cells in the form of a transferrin (Tf)-Fe(III) complex that binds to the cell surface receptor transferrin receptor 1 (TfR1)
  • excess iron is retained in the liver cells
  • the endosomal six transmembrane epithelial antigen of the prostate 3 (STEAP3) reduces Fe(III) (ferric ion) to Fe(II) (ferrous ion), which is subsequently transferred across the endosomal membrane by divalent metal transporter 1 (DMT1)
  • labile iron pool (LIP)
  • LIP is toxic to the cells owing to the production of massive amounts of ROS.
  • DHA is quickly converted to Vit-C within the cell, by interacting with reduced glutathione (GSH) [45,46,47]. NADPH then recycles the oxidized glutathione (glutathione disulfide (GSSG)) and converts it back into GSH
  • Fe(II) catalyzes the formation of OH• and OH− during the interaction between H2O2 and O2•− (Haber–Weiss reaction)
  • Ascorbate can efficiently reduce free iron, thus recycling the cellular Fe(II)/Fe(III) to produce more OH• from H2O2 than can be generated during the Fenton reaction, which ultimately leads to lipid, protein, and DNA oxidation
  • Vit-C-stimulated iron absorption
  • reduce cellular iron efflux
  • high-dose Vit-C may elevate cellular LIP concentrations
  • ascorbate enhanced cancer cell LIP specifically by generating H2O2
  • Vit-C produces H2O2 extracellularly, which in turn inhibits tumor cells immediately
  • tumor cells have a need for readily available Fe(II) to survive and proliferate.
  • Tf has been recognized to sequester most labile Fe(II) in vivo
  • Asc•− and H2O2 were generated in vivo upon i.v Vit-C administration of around 0.5 g/kg of body weight and that the generation was Vit-C-dose reliant
  • free irons, especially Fe(II), increase Vit-C autoxidation, leading to H2O2 production
  • iron metabolism is altered in malignancies
  • increase in the expression of various iron-intake pathways or the downregulation of iron exporter proteins and storage pathways
  • Fe(II) ion in breast cancer cells is almost double that in normal breast tissues
  • macrophages in the cancer microenvironment have been revealed to increase iron shedding
  • Advanced breast tumor patients had substantially greater Fe(II) levels in their blood than the control groups without the disease
  • increased the amount of LIP inside the cells through transferrin receptor (TfR)
  • Warburg effect, or metabolic reprogramming,
  • Warburg effect is aided by KRAS or BRAF mutations
  • Vit-C is supplied, it oxidizes to DHA, and then is readily transported by GLUT-1 in mutant cells of KRAS or BRAF competing with glucose [46]. DHA is quickly converted into ascorbate inside the cell by NADPH and GSH [46,107]. This decrease reduces the concentration of cytosolic antioxidants and raises the intracellular ROS amounts
  • increased ROS inactivates glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
  • ROS activates poly (ADP-ribose) polymerase (PARP), which depletes NAD+ (a critical co-factor of GAPDH); thus, further reducing the GAPDH associated with a multifaceted metabolic rewiring
  • Hindering GAPDH can result in an “energy crisis”, due to the decrease in ATP production
  • high-dose Vit-C recruited metabolites and increased the enzymatic activity in the pentose phosphate pathway (PPP), blocked the tri-carboxylic acid (TCA) cycle, and increased oxygen uptake, disrupting the intracellular metabolic balance and resulting in irreversible cell death, due to an energy crisis
  • mega-dose Vit-C influences energy metabolism by producing tremendous amounts of H2O2
  • Due to its great volatility at neutral pH [76], bolus therapy with mega-dose DHA has only transitory effects on tumor cells, both in vitro and in vivo.
Nathan Goodyear

Dihydroartemisinin is potential therapeutics for treating late-stage CRC by targeting t... - 0 views

  •  
    Ras mutation connected to abnormal expression of Myc
Nathan Goodyear

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and h... - 0 views

  • Proposed mechanism
  • The data show that pharmacologic ascorbate concentrations produced Asc•− selectively in extracellular fluid compared with blood and that H2O2 formation occurred when Asc•− concentrations were >100 nM in extracellular fluid.
  • These data validate the hypothesis that ascorbate is a prodrug for selective delivery of reactive species to the extravascular space
  • ...22 more annotations...
  • pharmacologic ascorbate as a prooxidant drug for therapeutic use.
  • Recently we reported that pharmacologic ascorbic acid concentrations produced H2O2 concentrations of ≥25 μM, causing cancer cell death in vitro
  • We found that H2O2 concentrations generated in vivo were those that caused cancer cell death in vitro
  • When ascorbate was given parenterally, Asc•−, the product of a loss of one electron from ascorbate, was detected preferentially in extracellular fluid compared with blood
  • Asc•− generation in extracellular fluid depended on the ascorbate dose and the resulting concentrations
  • With i.v. administration of ascorbate, Asc•− concentrations were as much as 12-fold greater in extracellular fluid compared to blood and approached 250 nM
  • In blood, such Asc•− concentrations were never produced and were always <50 nM
  • These data are all consistent with the hypothesis that pharmacologic ascorbate concentrations in vivo serve as a prodrug for selective delivery of H2O2 to the extracellular space
  • After oral ingestion, control of intracellular and extracellular ascorbate concentrations is mediated by three mechanisms: intestinal absorption, tissue transport, and renal reabsorption
  • intestinal absorption, or bioavailability, declines at doses >200 mg
    • Nathan Goodyear
       
      significant limitation of gut absorption of vitamin C--at 200 mg po.
  • corresponding to plasma concentrations of ≈60 μM
    • Nathan Goodyear
       
      equates to 0.06 mM.  Max blood levels found with po AA dosing has been 0.22 mM
  • at approximately this concentration, the ascorbate tissue transporter SVCT2 approaches Vmax, and tissues appear to be saturated
    • Nathan Goodyear
       
      SVCT2 Rc in gut reach max binding.
  • also at ≈60 μM, renal reabsorption approaches saturation, and excess ascorbate is excreted in urine
  • Parenteral administration bypasses tight control
  • When tight control is bypassed, H2O2 forms in the extracellular space
  • in vivo validation of ascorbate as a prodrug for selective H2O2 formation
  • Temporarily bypassing tight control with parenteral administration of ascorbate allows H2O2 to form in discrete time periods only, decreasing likelihood of harm, and provides a pharmacologic basis for therapeutic use of i.v. ascorbate
  • H2O2 formation results in selective cytotoxicity
  • Tumor cells are killed with exposure to H2O2 for ≤30 min
  • In vitro, killing is mediated by H2O2 rather than Asc•−
  • In addition to cancer treatment, another potential therapeutic use is for treatment of infections. H2O2 concentrations of 25–50 μM are bacteriostatic
  • virally infected cells may also be candidates
  •  
    follow up invivo study to previous study from 2005.  Here, the authors prove their hypothesis that ascorbate is a prodrug for delivery of H2O2.
« First ‹ Previous 1281 - 1300 of 1305 Next ›
Showing 20 items per page