Skip to main content

Home/ Dr. Goodyear/ Group items tagged fraction

Rss Feed Group items tagged

Nathan Goodyear

Genetically targeted fractionated chemotherapy - 0 views

  •  
    Good article review on low-dose or fractionated chemotherapy.
indian-health

Cardiac Surgeons in Mumbai Opens the Door to Your New Life - 0 views

  •  
    Cardiac surgery in India is available at a fraction of the cost international patients would have to pay elsewhere. The low cardiac surgery cost in India attracts hundreds of cardiac patients from abroad. In comparison to the western nations such as Britain and the US, the cardiac surgery cost in India is just a fraction of what it costs there.Top heart hospitals of Mumbai offer healthcare services at extremely affordable rates, backed with high-quality results as far as global patients all across the world are concerned. The top heart hospitals of Mumbai keep good quality and are equipped with a skilled team of surgeons using robotic surgery in India.
indian-health

Les chirurgiens cardiaques de Mumbai ouvrent la porte à votre nouvelle vie - 0 views

  •  
    La chirurgie cardiaque en Inde est disponible à une fraction du coût que les patients internationaux devraient payer ailleurs. Le faible coût de la chirurgie cardiaque en Inde attire des centaines de patients cardiaques de l'étranger. En comparaison avec les pays occidentaux tels que la Grande-Bretagne et les États-Unis, le coût de la chirurgie cardiaque en Inde ne représente qu'une fraction de ce qu'il coûte là-bas. Les meilleurs hôpitaux cardiaques de Mumbai offrent des services de santé à des tarifs extrêmement abordables, soutenus par des résultats de haute qualité dans la mesure car les patients du monde entier sont concernés. Les meilleurs hôpitaux cardiaques de Mumbai sont de bonne qualité et sont équipés d'une équipe de chirurgiens qualifiés utilisant la chirurgie robotique en Inde.
Nathan Goodyear

Understanding lipoproteins as transporters of cholesterol and other lipids - 0 views

  • the density of each lipoprotein is clearly in a constant state of flux
  • Two lipoprotein fractions are primarily involved in transport of lipid to peripheral tissues, very low density lipoproteins (VLDL) from the liver and chylomicrons from the intestinal tract
  • As lipid is removed from these two fractions, the density of each fraction increases, thereby transforming VLDL into intermediate-density lipoprotein (IDL) and ultimately LDL, and chylomicrons into chylomicron remnants
  • ...5 more annotations...
  • LDL-cholesterol has been described, and overly simplified, as “bad cholesterol” and HDL-cholesterol as “good cholesterol.”
  • Two primary subfractions of HDL have been classified as the higher-density HDL3, and the less dense, more lipid-filled HDL2
  • HDL, is primarily involved in returning lipid, largely cholesterol, to the liver in a process called reverse cholesterol transport
  • Recent investigations are also suggesting that smaller, denser lipoproteins are associated with increased risk of atherosclerotic development
  • lipoproteins as transporters of lipid
  •  
    Brief, but good review of lipoproteins and apoliproteins.
Nathan Goodyear

An assessment of correlations between endogenou... [J Med Invest. 2003] - PubMed - NCBI - 0 views

  •  
    Men with "proven" CAD have lower androgens compared to healthy control group.  Additionally, low T found to be associated with low ejection fraction.
Nathan Goodyear

Enhancement of cytotoxicity of NK cells by D-Fraction, a polysaccharide from Grifola fr... - 0 views

  •  
    The D-Fraction from maitake mushrooms enhanced the cytotoxicity from NK cells through IL-12 signaling.
Nathan Goodyear

Alkaline phosphatase isoenzyme activities in rheumatoid arthritis: hepatobiliary enzyme... - 0 views

  •  
    ALP fractionation isoenzyme study can provide deeper understanding of disease involvement.
Nathan Goodyear

The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotl... - 0 views

  •  
    Amazing statistics out of UK.  The fraction of cancer attributable to lifestyle estimated to be as high as 41.2%.  The cure for cancer is prevention through lifestyle intervention.
Nathan Goodyear

Steroids in Saliva for Assessing Endocrine Function - 0 views

  •  
    Another study validates saliva as a reliable method for hormone testing.  The author concludes: "steroid concentrations in saliva are independent of flow rate and reflect those in the free fraction in plasma".  This study also discuss potential collection problems and means to resolve them.
Nathan Goodyear

Beta Glucan: Health Benefits in Obesity and Metabolic Syndrome - 0 views

  • beta glucan (β-glucan), which is a dietary fiber readily found in oat and barley bran
  • Among cereals, the highest content (g per 100 g dry weight) of β-glucan has been reported for barley: 2–20 g (65% is water-soluble fraction) and for oats: 3–8 g (82% is water-soluble fraction). Other cereals also contain β-glucan but in much lower amounts: sorghum 1.1–6.2 g, rye 1.3–2.7 g, maize 0.8–1.7 g, triticale 0.3–1.2 g, wheat 0.5–1.0 g, durum wheat 0.5-0.6 g, and rice 0.13 g
  • Other sources of β-glucan include some types of seaweed [17] and various species of mushrooms such as Reishi, Shiitake, and Maitake [18].
  • ...5 more annotations...
  • Distinction between soluble and insoluble dietary fibers is based on the solubility characteristics of dietary fiber in hot aqueous buffer solutions
  • Insoluble fibers primarily consist of cellulose and some hemicelluloses, resistant starch, and chitin while soluble fibers include pectins, β-glucans, galactomannan gums, mucilages, and some hemicelluloses
  • insoluble fibers increase fecal bulk and the excretion of bile acids and decrease intestinal transit time
  • Soluble fibers increase total transit time by delaying gastric emptying and also slow glucose absorption
  • only soluble viscous fibers delay gastric emptying time and slow glucose absorption while nonviscous soluble fibers primarily act as a substrate for microbial fermentation in the colon
  •  
    good review on Beta glucan.
Nathan Goodyear

Progesterone metabolites in breast cancer - 1 views

  • P metabolites produced within breast tissues might be independently active hormones functioning as cancer-promoting or -inhibiting regulatory agents
  • these P metabolites function as independent pro-or anti-cancer autocrine/paracrine hormones that regulate cell proliferation, adhesion, apoptosis and cytoskeletal, and other cell status molecules via novel receptors located in the cell membrane and intrinsically linked to cell signaling pathways
  • only a fraction of all breast cancer patients respond to this estrogen-based therapy and the response is only temporary
  • ...30 more annotations...
  • P serves as the precursor for the major steroid hormones (androgens, estrogens, corticosteroids) produced by the gonadal and adrenal cortical tissues.
  • 5α-pregnane, 5β-pregnane, and 4-pregnene metabolites of P
  • These P-metabolizing enzymes included 5α-reductase, 5β-reductase, 3α-hydroxysteroid oxido-reductase (3α-HSO), 3β-HSO, 20α-HSO, 20β-HSO, 6α(β)-, 11β-, 17-, and 21-hydroxylase, and C17–20-lyase
  • Reduction of P to 5α-pregnanes is catalyzed by 5α-reductase and the direct 5α-reduced metabolite of P is 5α-pregnane-3,20-dione (5αP). The 5α-reductase reaction is irreversible
  • The two 4-pregnenes resulting from direct P conversion are 4-pregnen-3α-ol-20-one (3αHP) and 4-pregnen-20α-ol-3-one (20αHP), catalyzed by the actions of 3α-HSO and 20α-HSO respectively
  • the P-metabolizing enzyme activities identified in human breast tissues and cell lines were: 5α-reductase, 3α-HSO, 3β-HSO, 20α-HSO, and 6α-hydroxylase
  • In normal breast tissue, conversion to 4-pregnenes greatly exceeded the conversion to 5α-pregnanes, whereas in tumorous tissue, conversion to 5α-pregnanes greatly exceeded that to 4-pregnenes
  • The results indicated that P 5α-reductase activity is significantly higher, whereas P 3α-HSO and 20α-HSO activities are significantly lower in tumor than in normal tissues
  • he results showed that production of 5α-pregnanes was higher and that of 4-pregnenes was lower in tumorigenic (e.g. MCF-7) than in nontumorigenic (e.g. MCF-10A) cells (Fig. 3c⇑), while differences in ER/P status did not appear to play a role
  • The 5α-pregnane-to-4-pregnene ratios were 7- to 20-fold higher in the tumorigenic than in the nontumorigenic cell lines
  • altered direction in P metabolism, and hence in metabolite ratios, was due to significantly elevated 5α-reductase and depressed 3α- and 20α-HSO activities in breast tumor tissues and tumorigenic cells. It appeared, therefore, that changes in P-metabolizing enzyme activities might be related to the shift toward mammary cell tumorigenicity and neoplasia
  • In vivo, changes in enzyme activity can result from changes in levels of the enzyme due to changes in expression of the mRNA coding for the enzyme, or from changes in the milieu in which the enzyme operates (such as temperature and pH, and concentrations of cofactors, substrates, products, competitors, ions, phospholipids, and other molecules)
  • Overall, the enzyme activity and expression studies strongly suggest that 5α-reductase stimulation and 3α- and 20α-HSO suppression are associated with the transition from normalcy to cancer of the breast
  • The level of expression of 5α-reductase is up-regulated by estradiol and P in the uterus (Minjarez et al. 2001) and by 5α-dihydrotestosterone (DHT) in the prostate
  • 3αHP inhibited whereas 5αP-stimulated proliferation
  • Stimulation in cell numbers was also observed when cells were treated with other 5α-pregnanes, such as 5α-pregnan-3α-ol-20-one, 5α-pregnan-20α-ol-3-one, and 5α-pregnane-3α,20α-diol, whereas other 4-pregnenes such as 20α-HP and 4-pregnene-3α,20α-diol resulted in suppression of cell proliferation
  • Stimulation of cell proliferation with 5αP and inhibition with 3αHP were also observed in all other breast cell lines examined, whether ER/P-negative (MCF-10A, MDA-MB-231) or ER/P-positive (T47D, ZR-75-1) and whether requiring estrogen for tumorigenicity (MCF-7, T47D) or not (MDA-MB-231), or whether they are nontumorigenic (
  • αHP resulted in significant increases in apoptosis and decreases in mitosis, leading to significant decreases in total cell numbers. In contrast, treatment with 5αP resulted in decreases in apoptosis and increases in mitosis.
  • The opposing actions of 5αP and 3αHP on both cell anchorage and proliferation strengthen the hypothesis that the direction of P metabolism in vivo toward higher 5α-pregnane and lower 4-pregnene concentrations could promote breast neoplasia and lead to malignancy.
  • he effects on proliferation and adhesion were not due to P, but due to the 5α-reduced metabolites
  • The studies showed that binding of 5αP or 3αHP occurs in the plasma membrane fractions, but not in the nuclear or cytosolic compartments
  • separate high-specificity, high-affinity, low- capacity receptors for 5αP and 3αHP that are distinct from each other and from the well-studied nuclear/cytosolic P, estrogen, and androgen and corticosteroid receptors
  • The studies thus provided the first demonstration of the existence of specific P metabolite receptors
  • the receptor results suggest that the putative tumorigenic actions of 5αP may be significantly augmented by the estradiol-induced increases in 5αP binding and decreases in 3αHP binding.
  • Estradiol and 5αP resulted in significant dose-dependent increases, whereas 3αHP and 20αHP each resulted in dose-dependent decreases in total ER
  • In combination, estradiol + 5αP or 3αHP + 20αHP resulted in additive increases or decreases respectively in ER numbers.
  • The data suggest that the action of 5αP on breast cancer cells involves modulation of the MAPK signaling pathway
  • current evidence does not appear to support the notion that increased 5α-reductase activity/ expression might significantly alter androgen influences on breast tumor growth.
  • both testosterone and DHT inhibit cell growth more or less to the same extent
  • Note that 5α-reductase reaction is not reversible
  •  
    Fantastic read on the effects of progesterone metabolism on tumor and cancer growth.  Tumorigenesis is not just about the hormone, hormone balance, but about the metabolism of hormones.  This is why premarin is so carcinogenic: it is primarily metabolized by the 4-OH estrone pathway.
Nathan Goodyear

Acute Effects of Triiodothyronine (T3) Replacement Therapy in Patients with Chronic Hea... - 0 views

  •  
    IV T3 was given to patients with chronic heart failure.  What the study found may surprise you: improved heart function (ventricular), improved BNP, decrease heart rate, no side effects.  T3 has been shown to be more predictive of cardiac death in those with cardiac disease, than elevated lipids or decreased ejection fraction.
Nathan Goodyear

The clinical use of HMG CoA-reductase inhibitors a... [Biofactors. 2003] - PubMed result - 0 views

  •  
    Statin drugs (lipitor, crestor...) deplete CoQ10 which reduces heart Ejection Fraction
Nathan Goodyear

http://partnecglobal.eurasiansupply.com/ds/rd/rdgf/_pdf7.pdf - 0 views

  •  
    Study finds that maitake mushroom extract, MD-Fraction (a beta-glucan), has significant anti-tumor activity and anti-metastasis activity through NK activity, Antigen presenting cells, and through suppression of ICAM-1.
Nathan Goodyear

Exercise-induced right ventricular dysfunction and structural remodelling in endurance ... - 0 views

  • In a cohort of well-trained athletes, we demonstrated that intense endurance exercise causes an acute reduction in RV function that increases with race duration and correlates with increases in biomarkers of myocardial injury
  • no relationship between LV function and biomarker levels
  • focal gadolinium enhancement and increased RV remodelling were more prevalent in those athletes with a longer history of competitive sport, suggesting that repetitive ultra-endurance exercise may lead to more extensive RV change and possible myocardial fibrosis
  • ...22 more annotations...
  • he cardiac impact of both acute and cumulative exercise is greatest on the RV.
  • Greater reductions in RV function occurred in those athletes competing for a longer duration, suggesting that the heart has a finite capacity to maintain the increased work demands of exercise
  • cardiac injury is greatest in the least trained
  • Previous investigators have documented reductions in RV function in less trained subjects over the marathon distance
  • We enrolled elite and subelite athletes and found a significant association between fitness (VO2max) and the reduction in post-race RVEF
  • Even after many years of detraining, cardiac dilation may not completely regress in elite athletes
  • The focus on well-trained athletes may be of particular relevance, given that they perform exercise of highest intensity and duration most frequently, and, thus, may be at a greater risk of cumulative injury.
  • The lack of correlation between increases in troponin and changes in LV function seen in this study has been previously interpreted as evidence that post-exercise elevations in cardiac biomarkers are benign.
  • a significant correlation between changes in RVEF and post-race biomarker levels and this relationship was even stronger in the athletes who completed the race of longest duration, the ultra-triathlon
  • The correlations with RVEF, but not LVEF, provide further evidence of the differential effects of intense exercise on RV and LV function
  • BNP release during intense exercise is associated with greater relative increases in RV systolic pressures, but not LV pressures
  • BNP may provide a measure of both acute RV load and the resultant fatigue which occurs when this load is sustained
  • It has been demonstrated that ventricular load increases with exercise intensity and is greater for the RV than the LV,29 thus potentially explaining why the RV is more susceptible to fatigue after prolonged exercise.
  • This study demonstrates, for the first time, an association between endurance exercise of increasing duration and structural, functional, and biochemical markers of cardiac dysfunction in highly trained athletes
  • Functional abnormalities were confined to the RV and were largely reversible 1 week following the event
  • there remained a significant minority of athletes in whom there was evidence of myocardial fibrosis in the interventricular septum
  • RV abnormalities may be acquired through cumulative bouts of intense exercise and provides direction for prospective investigations aimed at elucidating whether extreme exercise may promote arrhythmias in some athletes.
  • the acute injury and chronic remodelling of the myocardium both disproportionately affect the RV and it remains possible that the two are linked.
  • focal DGE was confined to the interventricular septum and commonly at the site of RV attachment
  • emerging evidence that intense endurance exercise may be associated with an excess in arrhythmic disorders, the mechanisms for which remain unexplained
  • RVEF (and not LVEF) was reduced in athletes with complex ventricular arrhythmias when compared with healthy athletes and non-athletes without arrhythmias
  • it is premature to conclude that these changes may represent a proarrhythmic substrate
  •  
    Study finds endurance racing results in reduce Right ventricle ejection fraction even in elite athletes.  This post-race RVEF reduction is associated with VO2max.
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
spineneuro

Top Hospitals for Spinal Fusion India Will Fix Your Back Pain Forever ~ Medical Tourism... - 0 views

  •  
    The cost distinction is especially huge while in comparison to Yemen. Spinal fusion surgery cost India is performed at affordable costs, with the best available treatment technology. The spinal fusion surgery cost India amount to only a fraction of that of their counterparts in most Western countries. Please contact us Call us at: +91-9325887033 Or mail us at enquiry@spineandneurosurgeryhospitalindia.com
spineneuro

French to India Medical Travel: Les meilleurs hôpitaux pour Spinal Fusion Ind... - 0 views

  •  
    Coût de la chirurgie de fusion vertébrale L'Inde est réalisée à des coûts abordables, avec la meilleure technologie de traitement disponible. Le coût de la chirurgie de fusion vertébrale en Inde ne représente qu'une fraction de celui de leurs homologues dans la plupart des pays occidentaux. Contactez-nous Appelez-nous au : +91-9325887033 Ou écrivez-nous à enquiry@spineandneurosurgeryhospitalindia.com
spineneuro

Spine And Neuro Surgery Hospital India: Start a New Journey of Pain Free Life With Spin... - 0 views

  •  
    The spinal fusion surgery cost amount to only a fraction of that of their counterparts in most Western countries. The spinal fusion surgery cost is usually 25-50% less than that of equivalent treatment in the West
1 - 20 of 49 Next › Last »
Showing 20 items per page