Skip to main content

Home/ Dr. Goodyear/ Group items tagged enhancing

Rss Feed Group items tagged

fitspresso

https://www.thefastleanpro.us/ - 0 views

  •  
    Fast Lean Pro™ (official) | weight lose Formula thefastleanpro.us · by Fast Lean Pro Fast Lean Pro Only $49/Bottle Limited Time Offer! Fast Lean Pro Special Deal + Special 51% Discount Save $300 + 180 Days Money Back Guarantee FastLeanPro The #1 Solution To natural metabolism booster helps you lose weight quickly without starving yourself. Fast Lean Pro is a natural powder supplement for weight loss that has recently been developed by Japanese scientists. Regular Price: $99/per bottle Only for: $49/per bottle What Is Fast Lean Pro? Fast Lean Pro is a powdered dietary powdery supplement designed to aid in weight loss. It contains a unique combination of ingredients that are believed to activate the body's "fasting switch" to optimize results. This product focuses not only on weight loss but also on promoting cellular rejuvenation, fasting, and a healthy metabolism. The concept behind Fast Lean Pro is that incorporating fasting into one's lifestyle can lead to positive outcomes irrespective of individual food choices and eating habits. To comprehend the mechanism of the Fast Lean Pro process, it is necessary to delve into its specific details. One of the few weight loss pills on the market that contains Fibersol is Fast Lean Pro. This safe, specialized fiber adds bulk to its weight when combined with water, curbing your appetite before it throws off your meal plan. If you're trying to lose weight or curb your appetite, Fast Lean Pro can help. Supporting substances such as niacin and chromium contribute to this. The body can further benefit from these nutrients, such as through improved metabolic regulation. Fast lean Pro is non-GMO, vegan friendly, and contains no artificial ingredients or stimulants. Fast Lean Pro is a weight loss product that promotes the body's natural self-feeding process. The body naturally removes old, damaged cells through a process known as autophagy to encourage cell regeneration and repair. Recent studies by a group
Nathan Goodyear

Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer... - 0 views

  • More than half of cancer patients are treated with IR at some point during their treatment
  • fractionation schedule is the delivery of 1.8–2.0 Gy per day, five days per week
  • Nuclear DNA is the primary target of IR; it causes DNA damage (genotoxic stress) by direct DNA ionization
  • ...121 more annotations...
  • IR also indirectly induces DNA damage by stimulating reactive oxygen species (ROS) production
  • IR is known to induce EMT in vitro
  • p53 is activated in response to IR-induced DNA damage
  • IR paradoxically also promotes tumour recurrence and metastasis
  • DNA double-strand breaks (DSBs)
  • cancer cells undergoing EMT acquire invasive and metastatic properties
  • changes in the tumour microenvironment (TME)
  • IR seems to induce EMT and CSC phenotypes by regulating cellular metabolism
  • EMT, stemness, and oncogenic metabolism are known to be associated with resistance to radiotherapy and chemotherapy
  • Hanahan and Weinberg proposed ten hallmarks of cancer that alter cell physiology to enhance malignant growth: 1) sustained proliferation, 2) evasion of growth suppression, 3) cell death resistance, 4) replicative immortality, 5) evasion of immune destruction, 6) tumour-promoting inflammation, 7) activation of invasion and metastasis, 8) induction of angiogenesis, 9) genome instability, and 10) alteration of metabolism
  • EMT is a developmental process that plays critical roles in embryogenesis, wound healing, and organ fibrosis
  • IR is known to induce stemness and metabolic alterations in cancer cells
  • transforming growth factor-β [TGF-β], epidermal growth factor [EGF]) and their associated signalling proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa B [NF-κB], extracellular signal-regulated kinase [ERK], and phosphatidylinositol 3-kinase [PI3K]/Akt
  • activate EMT-inducing transcription factors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/2, and E12/E47
  • Loss of E-cadherin is considered a hallmark of EMT
  • IR has been shown to induce EMT to enhance the motility and invasiveness of several cancer cells, including those of breast, lung, and liver cancer, and glioma cells
  • IR may increase metastasis in both the primary tumour site and in normal tissues under some circumstance
  • sublethal doses of IR have been shown to enhance the migratory and invasive behaviours of glioma cells
  • ROS are known to play an important role in IR-induced EMT
  • High levels of ROS trigger cell death by causing irreversible damage to cellular components such as proteins, nucleic acids, and lipids, whereas low levels of ROS have been shown to promote tumour progression—including tumour growth, invasion, and metastasis
  • hypoxia-inducible factor-1 (HIF-1) is involved in IR-induced EMT
  • Treatment with the N-acetylcysteine (NAC), a general ROS scavenger, prevents IR-induced EMT, adhesive affinity, and invasion of breast cancer cells
    • Nathan Goodyear
       
      NAC for all patients receiving radiation therapy
  • Snail has been shown to play a crucial role in IR-induced EMT, migration, and invasion
  • IR activates the p38 MAPK pathway, which contributes to the induction of Snail expression to promote EMT and invasion
  • NF-κB signalling that promotes cell migration
  • ROS promote EMT to allow cancer cells to avoid hostile environments
  • HIF-1 is a heterodimer composed of an oxygen-sensitive α subunit and a constitutively expressed β subunit.
  • Under normoxia, HIF-1α is rapidly degraded, whereas hypoxia induces stabilisation and accumulation of HIF-1α
  • levels of HIF-1α mRNA are enhanced by activation of the PI3K/Akt/mammalian target of rapamycin (mTOR)
  • IR is known to increase stabilisation and nuclear accumulation of HIF-1α, since hypoxia is a major condition for HIF-1 activation
  • IR induces vascular damage that causes hypoxia
  • ROS is implicated in IR-induced HIF-1 activation
  • IR causes the reoxygenation of hypoxic cancer cells to increase ROS production, which leads to the stabilisation and nuclear accumulation of HIF-1
  • IR increases glucose availability under reoxygenated conditions that promote HIF-1α translation by activating the Akt/mTOR pathway
  • The stabilised HIF-1α then translocates to the nucleus, dimerizes with HIF-1β, and increases gene expression— including the expression of essential EMT regulators such as Snail—to induce EMT, migration, and invasion
  • TGF-β signalling has been shown to play a crucial role in IR-induced EMT
  • AP-1 transcription factor is involved in IR-induced TGF-β1 expression
  • Wnt/β-catenin signalling is also implicated in IR-induced EMT
  • Notch signalling is known to be involved in IR-induced EMT
  • IR also increases Notch-1 expression [99]. Notch-1 is known to induce EMT by upregulating Snail
  • PAI-1 signalling is also implicated in IR-induced Akt activation that increases Snail levels to induce EMT
  • EGFR activation is known to be associated with IR-induced EMT, cell migration, and invasion by activating two downstream pathways: PI3K/Akt and Raf/MEK/ERK
  • ROS and RNS are also implicated in IR-induced EGFR activation
  • IR has also been shown to activate Hedgehog (Hh) signalling to induce EMT
  • IR has been shown to induce Akt activation through several signalling pathways (EGFR, C-X-C chemokine receptor type 4 [CXCR4]/C-X-C motif chemokine 12 [CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and upstream regulators (Bmi1, PTEN) that promote EMT and invasion
  • CSCs possess a capacity for self-renewal, and they can persistently proliferate to initiate tumours upon serial transplantation, thus enabling them to maintain the whole tumour
  • Conventional cancer treatments kill most cancer cells, but CSCs survive due to their resistance to therapy, eventually leading to tumour relapse and metastasis
  • identification of CSCs, three types of markers are utilised: cell surface molecules, transcription factors, and signalling pathway molecules
  • CSCs express distinct and specific surface markers; commonly used ones are CD24, CD34, CD38, CD44, CD90, CD133, and ALDH
  • Transcription factors, including Oct4, Sox2, Nanog, c-Myc, and Klf4,
  • signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived growth factor receptor (PDGFR), and JAK/STAT
  • microRNAs (miRNAs), including let-7, miR-22, miR-34a, miR-128, the miR-200 family, and miR-451
  • Non-CSCs can be reprogrammed to become CSCs by epigenetic and genetic changes
  • EMT-inducing transcription factors, such as Snail, ZEB1, and Twist1, are known to confer CSC properties
  • Signalling pathways involved in EMT, including those of TGF-β, Wnt, and Notch, have been shown to play important roles in inducing the CSC phenotype
  • TGF-β1 not only increases EMT markers (Slug, Twist1, β-catenin, N-cadherin), but also upregulates CSC markers (Oct4, Sox2, Nanog, Klf4) in breast and lung cancer cells
  • some CSC subpopulations arise independently of EMT
  • IR has been shown to induce the CSC phenotype in many cancers, including breast, lung, and prostate cancers, as well as melanoma
  • Genotoxic stress due to IR or chemotherapy promotes a CSC-like phenotype by increasing ROS production
  • IR has been shown to induce reprogramming of differentiated cancer cells into CSCs
  • In prostate cancer patients, radiotherapy increases the CD44+ cell population that exhibit CSC properties
  • IR also induces the re-expression of stem cell regulators, such as Sox2, Oct4, Nanog, and Klf4, to promote stemness in cancer cells
  • EMT-inducing transcription factors and signalling pathways, including Snail, STAT3, Notch signalling, the PI3K/Akt pathway, and the MAPK cascade, have been shown to play important roles in IR-induced CSC properties
  • STAT3 directly binds to the Snail promoter and increases Snail transcription, which induces the EMT and CSC phenotypes, in cisplatin-selected resistant cells
  • Other oncogenic metabolic pathways, including glutamine metabolism, the pentose phosphate pathway (PPP), and synthesis of fatty acids and cholesterol, are also enhanced in many cancers
  • metabolic reprogramming
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • metabolic reprogramming
  • tumour cells exhibit high mitochondrial metabolism as well as aerobic glycolysis
  • occurring within the same tumour
  • CSCs can be highly glycolytic-dependent or oxidative phosphorylation (OXPHOS)-dependen
  • mitochondrial function is crucial for maintaining CSC functionality
  • cancer cells depend on mitochondrial metabolism and increase mitochondrial production of ROS that cause pseudo-hypoxia
  • HIF-1 then enhances glycolysis
  • CAFs have defective mitochondria that lead to the cells exhibiting the Warburg effect; the cells take up glucose, and then secrete lactate to 'feed' adjacent cancer cells
  • lactate transporter, monocarboxylate transporter (MCT)
  • nutrient microenvironment
  • Epithelial cancer cells express MCT1, while CAFs express MCT4. MCT4-positive, hypoxic CAFs secrete lactate by aerobic glycolysis, and MCT1-expressing epithelial cancer cells then uptake and use that lactate as a substrate for the tricarboxylic acid (TCA) cycle
  • MCT4-positive cancer cells depend on glycolysis and then efflux lactate, while MCT1-positive cells uptake lactate and rely on OXPHOS
  • metabolic heterogeneity induces a lactate shuttle between hypoxic/glycolytic cells and oxidative/aerobic tumour cells
  • bulk tumour cells exhibit a glycolytic phenotype, with increased conversion of glucose to lactate (and enhanced lactate efflux through MCT4), CSC subsets depend on oxidative phosphorylation; most of the glucose entering the cells is converted to pyruvate to fuel the TCA cycle and the electron transport chain (ETC), thereby increasing mitochondrial ROS production
  • the major fraction of glucose is directed into the pentose phosphate pathway, to produce redox power through the generation of NADPH and ROS scavengers
  • HIF-1α, p53, and c-Myc, are known to contribute to oncogenic metabolism
  • regulatory molecules involved in EMT and CSCs, including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and Akt, are implicated in the metabolic reprogramming of cancer cells
  • HIF-1 induces the expression of glycolytic enzymes, including the glucose transporter GLUT, hexokinase, lactate dehydrogenase (LDH), and MCT, resulting in the glycolytic switch
  • HIF-1 represses the expression of pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase (PDH), thereby inhibiting mitochondrial activity
  • STAT3 has been implicated in EMT-induced metabolic changes as well
  • TGF-β and Wnt play important roles in the metabolic alteration of cancer cells
  • Akt is also implicated in the glycolytic switch and in promoting cancer cell invasiveness
  • EMT, invasion, metastasis, and stemness
  • pyruvate kinase M2 (PKM2), LDH, and pyruvate carboxylase (PC), are implicated in the induction of the EMT and CSC phenotypes
  • decreased activity of PKM2 is known to promote an overall shift in metabolism to aerobic glycolysis
  • LDH catalyses the bidirectional conversion of lactate to pyruvate
  • High levels of LDHA are positively correlated with the expression of EMT and CSC markers
  • IR has been shown to induce metabolic changes in cancer cells
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR enhances glycolysis by upregulating GAPDH (a glycolysis enzyme), and it increases lactate production by activating LDHA, which converts pyruvate to lactate
  • IR also elevates MCT1 expression that exports lactate into the extracellular environment, leading to acidification of the tumour microenvironment
  • IR increases intracellular glucose, glucose 6-phosphate, fructose, and products of pyruvate (lactate and alanine), suggesting a role for IR in the upregulation of cytosolic aerobic glycolysis
  • Lactate can activate latent TGF-
  • lactate stimulates cell migration and enhances secretion of hyaluronan from CAF that promote tumour metastasis
  • promote tumour survival, growth, invasion, and metastasis; enhance the stiffness of the ECM; contribute to angiogenesis; and induce inflammation by releasing several growth factors and cytokines (TGF-β, VEGF, hepatocyte growth factor [HGF], PDGF, and stromal cell-derived factor 1 [SDF1]), as well as MMP
  • tumours recruit the host tissue’s blood vessel network to perform four mechanisms: angiogenesis (formation of new vessels), vasculogenesis (de novo formation of blood vessels from endothelial precursor cells), co-option, and modification of existing vessels within tissues.
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • immunosuppressive cells such as tumour-associated macrophages (TAM), MDSCs, and regulatory T cells, and the immunosuppressive cytokines, TGF-β and interleukin-10 (IL-10)
  • intrinsic immunogenicity or induce tolerance
  • cancer immunoediting’
  • three phases: 1) elimination, 2) equilibrium, and 3) escape.
  • The third phase, tumour escape, is mediated by antigen loss, immunosuppressive cells (TAM, MDSCs, and regulatory T cells), and immunosuppressive cytokines (TGF-β and IL-10).
  • IR can elicit various changes in the TME, such as CAF activity-mediated ECM remodelling and fibrosis, cycling hypoxia, and an inflammatory response
  • IR activates CAFs to promote the release of growth factors and ECM modulators, including TGF-β and MMP
  • TGF-β directly influences tumour cells and CAFs, promotes tumour immune escape, and activates HIF-1 signalling
    • Nathan Goodyear
       
      And now the receipts
  • MMPs degrade ECM that facilitates angiogenesis, tumour cell invasion, and metastasis
    • Nathan Goodyear
       
      Receipts and mechanisms
  • IR also promotes MMP-2/9 activation in cancer cells to promote EMT, invasion, and metastasis
  • IR-induced Snail increases MMP-2 expression to promote EMT
  • Radiotherapy has the paradoxical side-effect of increasing tumour aggressiveness
  • IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of tumour suppressors, which further promote oncogenic metabolism
  • Metabolic alterations
  • oncogenic metabolism
  • elicit various changes in the TME
  • Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms
  •  
    Important review article.
Nathan Goodyear

An integrative analysis reveals coordinated reprogramming of the epigenome and the tran... - 0 views

  • contribution to the training response of the epigenome as a mediator between genes and environment
  • Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters
  • highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus
  • ...34 more annotations...
  • The health benefits following exercise training are elicited by gene expression changes in skeletal muscle, which are fundamental to the remodeling process
  • there is increasing evidence that more short-term environmental factors can influence DNA methylation
  • dietary factors have the potency to alter the degree of DNA methylation in different tissues, 9,10 including skeletal muscle
  • In one study, a single bout of endurance-type exercise was shown to affect methylation at a few promoter CpG sites
  • In the context of diabetes, exercise training has been shown to affect genome-wide methylation pattern in skeletal muscle,13 as well as in adipose tissue.
  • physiological stressors can indeed affect DNA methylation
  • training intervention reshapes the epigenome and induces significant changes in DNA methylation
  • the findings from this tightly controlled human study strongly suggest that the regulation and maintenance of exercise training adaptation is to a large degree associated to epigenetic changes, especially in regulatory enhancer regions
  • Endurance training [after training (T2) vs. before training (T1)] induced significant (false discovery rate, FDR< 0.05) methylation changes at 4919 sites across the genome in the trained leg
  • identified 4076 differentially expressed genes
  • a complementary approach revealed that over 600 CpG sites correlated to the increase in citrate synthase activity, an objective measure of training response (Figure S4 and Dataset S14). This might imply that some of these sites could influence the degree of training response.
  • As expected by a physiological environmental trigger on adult tissue, the observed effect size on DNA methylation was small in comparison to disease states such as cancer
  • a preferential localization outside of CpG Islands/Shelves/Shores
  • endurance training especially influences enhancers
  • negative correlation was more prominent for probes in promoter/5′UTR/1st exon regions, while gene bodies had a stronger peak of positive correlation
  • The significant changes in DNA methylation, that primarily occurred in enhancer regions, were to a large extent associated with relevant changes in gene expression
  • The main findings of this study were that 3 months of endurance training in healthy human volunteers induced significant methylation changes at almost 5000 sites across the genome and significant differential expression of approximately 4000 genes
  • DMPs that increased in methylation were mainly associated to structural remodeling of the muscle and glucose metabolism, while the DMPs with decreased methylation were associated to inflammatory/immunological processes and transcriptional regulation
  • This suggests that the changes in methylation seen with training were not a random effect across the genome but rather a controlled process that likely contributes to skeletal muscle adaptation to endurance training
  • Correlation of the changes in DNA methylation to the changes in gene expression showed that the majority of significant methylation/expression pairs were found in the groups representing either increases in expression with a concomitant decrease in methylation or vice versa
  • The fraction of genes showing both significant decrease in methylation and upregulation was 7.5% of the DEGs or 2.3% of all genes detected in muscle tissue with at least one measured DNA methylation position. Correspondingly, 7.0% of the DEGs or 2.1% of all genes showed both significant increase in methylation and downregulation
  • we show that DNA methylation changes are associated to gene expression changes in roughly 20% of unique genes that significantly changed with training
  • Examples of structural genes include COL4A1, COL4A2 and LAMA4. These genes have also been identified as important for differences in responsiveness to endurance training
  • methylation status could be part of the mechanism behind variable training response
  • Among the metabolic genes, MDH1 catalyzes the reversible oxidation of malate to oxaloacetate, utilizing the NAD/NADH cofactor system in the citric acid cycle and NDUFA8 plays an important role in transferring electrons from NADH to the respiratory chain
  • PPP1R12A,
  • In the present study, methylation predominantly changed in enhancer regions with enrichment for binding motifs for different transcription factors suggesting that enhancer methylation may be highly relevant also in exercise biology
  • Of special interest in the biology of endurance training may be that MRFs, through binding to the PGC-1α core promoter, can regulate this well-studied co-factor for mitochondrial biogenesis
  • That endurance training led to an increased methylation in enhancer regions containing motifs for the MRFs and MEFs is somewhat counterintuitive since it should lead to the repression of the action of the above discussed transcription factors
  • decrease with training in this study, including CDCH15, MYH3, TNNT2, RYR1 and SH3GLB1
  • expression of MEF2A itself decreased with training
  • this study demonstrates that the transcriptional alterations in skeletal muscle in response to a long-term endurance exercise intervention are coupled to DNA methylation changes
  • We suggest that the training-induced coordinated epigenetic reprogramming mainly targets enhancer regions, thus contributing to differences in individual response to lifestyle interventions
  • a physiological health-enhancing stimulus can induce highly consistent modifications in DNA methylation that are associated to gene expression changes concordant with observed phenotypic adaptations
  •  
    Exercise alters gene expression via methylation--the power of epigenetics.  Interestingly, the majority of the methylation was outside the CPG island regions.  This 3 month study found methylation of 5,000 sites across the genome resulting in altered expression of apps 4,000 genes.  The altered muscle changes of the endurance training was linked to DNA methylation changes.
Nathan Goodyear

Press-pulse: a novel therapeutic strategy for the metabolic management of cancer | Nutr... - 0 views

  • A “press” disturbance was considered a chronic environmental stress on all organisms in an ecological community
  • “pulse” disturbances were considered acute events that disrupted biological communities to produce high mortality
  • Neoplasia involving dysregulated cell growth is the biological endpoint of the disease
  • ...84 more annotations...
  • Data from the American Cancer Society show that the rate of increase in cancer deaths/year (3.4%) was two-fold greater than the rate of increase in new cases/year (1.7%) from 2013 to 2017
  • cancer is predicted to overtake heart disease as the leading cause of death in Western societies
  • cancer can also be recognized as a metabolic disease.
  • glucose is first split into two molecules of pyruvate through the Embden–Meyerhof–Parnas glycolytic pathway in the cytosol
  • Aerobic fermentation, on the other hand, involves the production of lactic acid under normoxic conditions
  • persistent lactic acid production in the presence of adequate oxygen is indicative of abnormal respiration
  • Otto Warburg first proposed that all cancers arise from damage to cellular respiration
  • The Crabtree effect is an artifact of the in vitro environment and involves the glucose-induced suppression of respiration with a corresponding elevation of lactic acid production even under hyperoxic (pO2 = 120–160 mmHg) conditions associated with cell culture
  • the Warburg theory of insufficient aerobic respiration remains as the most credible explanation for the origin of tumor cells [2, 37, 51, 52, 53, 54, 55, 56, 57].
  • The main points of Warburg’s theory are; 1) insufficient respiration is the predisposing initiator of tumorigenesis and ultimately cancer, 2) energy through glycolysis gradually compensates for insufficient energy through respiration, 3) cancer cells continue to produce lactic acid in the presence of oxygen, and 4) respiratory insufficiency eventually becomes irreversible
  • Efraim Racker coined the term “Warburg effect”, which refers to the aerobic glycolysis that occurs in cancer cells
  • Warburg clearly demonstrated that aerobic fermentation (aerobic glycolysis) is an effect, and not the cause, of insufficient respiration
  • all tumor cells that have been examined to date contain abnormalities in the content or composition of cardiolipin
  • The evidence supporting Warburg’s original theory comes from a broad range of cancers and is now overwhelming
  • respiratory insufficiency, arising from any number mitochondrial defects, can contribute to the fermentation metabolism seen in tumor cells.
  • data from the nuclear and mitochondrial transfer experiments suggest that oncogene changes are effects, rather than causes, of tumorigenesis
  • Normal mitochondria can suppress tumorigenesis, whereas abnormal mitochondria can enhance tumorigenesis
  • In addition to glucose, cancer cells also rely heavily on glutamine for growth and survival
  • Glutamine is anapleurotic and can be rapidly metabolized to glutamate and then to α-ketoglutarate for entry into the TCA cycle
  • Glucose and glutamine act synergistically for driving rapid tumor cell growth
  • Glutamine metabolism can produce ATP from the TCA cycle under aerobic conditions
  • Amino acid fermentation can generate energy through TCA cycle substrate level phosphorylation under hypoxic conditions
  • Hif-1α stabilization enhances aerobic fermentation
  • targeting glucose and glutamine will deprive the microenvironment of fermentable fuels
  • Although Warburg’s hypothesis on the origin of cancer has created confusion and controversy [37, 38, 39, 40], his hypothesis has never been disproved
  • Warburg referred to the phenomenon of enhanced glycolysis in cancer cells as “aerobic fermentation” to highlight the abnormal production of lactic acid in the presence of oxygen
  • Emerging evidence indicates that macrophages, or their fusion hybridization with neoplastic stem cells, are the origin of metastatic cancer cells
  • Radiation therapy can enhance fusion hybridization that could increase risk for invasive and metastatic tumor cells
  • Kamphorst et al. in showing that pancreatic ductal adenocarcinoma cells could obtain glutamine under nutrient poor conditions through lysosomal digestion of extracellular proteins
  • It will therefore become necessary to also target lysosomal digestion, under reduced glucose and glutamine conditions, to effectively manage those invasive and metastatic cancers that express cannibalism and phagocytosis.
  • Previous studies in yeast and mammalian cells show that disruption of aerobic respiration can cause mutations (loss of heterozygosity, chromosome instability, and epigenetic modifications etc.) in the nuclear genome
  • The somatic mutations and genomic instability seen in tumor cells thus arise from a protracted reliance on fermentation energy metabolism and a disruption of redox balance through excess oxidative stress.
  • According to the mitochondrial metabolic theory of cancer, the large genomic heterogeneity seen in tumor cells arises as a consequence, rather than as a cause, of mitochondrial dysfunction
  • A therapeutic strategy targeting the metabolic abnormality common to most tumor cells should therefore be more effective in managing cancer than would a strategy targeting genetic mutations that vary widely between tumors of the same histological grade and even within the same tumor
  • Tumor cells are more fit than normal cells to survive in the hypoxic niche of the tumor microenvironment
  • Hypoxic adaptation of tumor cells allows for them to avoid apoptosis due to their metabolic reprograming following a gradual loss of respiratory function
  • The high rates of tumor cell glycolysis and glutaminolysis will also make them resistant to apoptosis, ROS, and chemotherapy drugs
  • Despite having high levels of ROS, glutamate-derived from glutamine contributes to glutathione production that can protect tumor cells from ROS
    • Nathan Goodyear
       
      reason to eliminate glutamine in cancer patients and even GSH with cancer patients
  • It is clear that adaptability to environmental stress is greater in normal cells than in tumor cells, as normal cells can transition from the metabolism of glucose to the metabolism of ketone bodies when glucose becomes limiting
  • Mitochondrial respiratory chain defects will prevent tumor cells from using ketone bodies for energy
  • glycolysis-dependent tumor cells are less adaptable to metabolic stress than are the normal cells. This vulnerability can be exploited for targeting tumor cell energy metabolism
  • In contrast to dietary energy reduction, radiation and toxic drugs can damage the microenvironment and transform normal cells into tumor cells while also creating tumor cells that become highly resistant to drugs and radiation
  • Drug-resistant tumor cells arise in large part from the damage to respiration in bystander pre-cancerous cells
  • Because energy generated through substrate level phosphorylation is greater in tumor cells than in normal cells, tumor cells are more dependent than normal cells on the availability of fermentable fuels (glucose and glutamine)
  • Ketone bodies and fats are non-fermentable fuels
  • Although some tumor cells might appear to oxidize ketone bodies by the presence of ketolytic enzymes [181], it is not clear if ketone bodies and fats can provide sufficient energy for cell viability in the absence of glucose and glutamine
  • Apoptosis under energy stress is greater in tumor cells than in normal cells
  • A calorie restricted ketogenic diet or dietary energy reduction creates chronic metabolic stress in the body
  • . This energy stress acts as a press disturbance
  • Drugs that target availability of glucose and glutamine would act as pulse disturbances
  • Hyperbaric oxygen therapy can also be considered another pulse disturbance
  • The KD can more effectively reduce glucose and elevate blood ketone bodies than can CR alone making the KD potentially more therapeutic against tumors than CR
  • Campbell showed that tumor growth in rats is greater under high protein (>20%) than under low protein content (<10%) in the diet
  • Protein amino acids can be metabolized to glucose through the Cori cycle
  • The fats in KDs used clinically also contain more medium chain triglycerides
  • Calorie restriction, fasting, and restricted KDs are anti-angiogenic, anti-inflammatory, and pro-apoptotic and thus can target and eliminate tumor cells through multiple mechanisms
  • Ketogenic diets can also spare muscle protein, enhance immunity, and delay cancer cachexia, which is a major problem in managing metastatic cancer
  • GKI values of 1.0 or below are considered therapeutic
  • The GKI can therefore serve as a biomarker to assess the therapeutic efficacy of various diets in a broad range of cancers.
  • It is important to remember that insulin drives glycolysis through stimulation of the pyruvate dehydrogenase complex
  • The water-soluble ketone bodies (D-β-hydroxybutyrate and acetoacetate) are produced largely in the liver from adipocyte-derived fatty acids and ketogenic dietary fat. Ketone bodies bypass glycolysis and directly enter the mitochondria for metabolism to acetyl-CoA
  • Due to mitochondrial defects, tumor cells cannot exploit the therapeutic benefits of burning ketone bodies as normal cells would
  • Therapeutic ketosis with racemic ketone esters can also make it feasible to safely sustain hypoglycemia for inducing metabolic stress on cancer cells
    • Nathan Goodyear
       
      Ketones are much more than energy adaptabilit, but actually are therapeutic.
  • ketone bodies can inhibit histone deacetylases (HDAC) [229]. HDAC inhibitors play a role in targeting the cancer epigenome
  • Therapeutic ketosis reduces circulating inflammatory markers, and ketones directly inhibit the NLRP3 inflammasome, an important pro-inflammatory pathway linked to carcinogenesis and an important target for cancer treatment response
  • Chronic psychological stress is known to promote tumorigenesis through elevations of blood glucose, glucocorticoids, catecholamines, and insulin-like growth factor (IGF-1)
  • In addition to calorie-restricted ketogenic diets, psychological stress management involving exercise, yoga, music etc. also act as press disturbances that can help reduce fatigue, depression, and anxiety in cancer patients and in animal models
  • Ketone supplementation has also been shown to reduce anxiety behavior in animal models
  • This physiological state also enhances the efficacy of chemotherapy and radiation therapy, while reducing the side effects
  • lower dosages of chemotherapeutic drugs can be used when administered together with calorie restriction or restricted ketogenic diets (KD-R)
  • Besides 2-DG, a range of other glycolysis inhibitors might also produce similar therapeutic effects when combined with the KD-R including 3-bromopyruvate, oxaloacetate, and lonidamine
    • Nathan Goodyear
       
      oxaloacetate is a glycolytic inhibitor, as is doxycycline, and IVC.
  • A synergistic interaction of the KD diet plus radiation was seen
  • It is important to recognize, however, that the radiotherapy used in glioma patients can damage the respiration of normal cells and increase availability of glutamine in the microenvironment, which can increase risk of tumor recurrence especially when used together with the steroid drug dexamethasone
  • Poff and colleagues demonstrated that hyperbaric oxygen therapy (HBOT) enhanced the ability of the KD to reduce tumor growth and metastasis
  • HBOT also increases oxidative stress and membrane lipid peroxidation of GBM cells in vitro
  • The effects of the KD and HBOT can be enhanced with administration of exogenous ketones, which further suppressed tumor growth and metastasis
  • Besides HBOT, intravenous vitamin C and dichloroacetate (DCA) can also be used with the KD to selectively increase oxidative stress in tumor cells
  • Recent evidence also shows that ketone supplementation may enhance or preserve overall physical and mental health
  • Some tumors use glucose as a prime fuel for growth, whereas other tumors use glutamine as a prime fuel [102, 186, 262, 263, 264]. Glutamine-dependent tumors are generally less detectable than glucose-dependent under FDG-PET imaging, but could be detected under glutamine-based PET imaging
  • GBM and use glutamine as a major fuel
  • Many of the current treatments used for cancer management are based on the view that cancer is a genetic disease
  • Emerging evidence indicates that cancer is a mitochondrial metabolic disease that depends on availability of fermentable fuels for tumor cell growth and survival
  • Glucose and glutamine are the most abundant fermentable fuels present in the circulation and in the tumor microenvironment
  • Low-carbohydrate, high fat-ketogenic diets coupled with glycolysis inhibitors will reduce metabolic flux through the glycolytic and pentose phosphate pathways needed for synthesis of ATP, lipids, glutathione, and nucleotides
  •  
    Cancer is a mitochondrial disease? So says the well published Dr Seyfried. Glucose and glutamine drive cancer growth.
wheelchairindia9

Tynor Ankle Splint - 0 views

  •  
    Ankle Splint Ankle Splint is designed to immobilize, support and stabilize the ankle joint in injury, or offer protection to people prone to ankle injuries. Rigid exoskeleton shell design gives better protection and control of the inversion or aversion of the ankle. Rigid immobilization Foam cushioning One size, that fits all Anatomical Easy to clean. Ankle Splint Features Unique figure of eight gripping Effective control on inversion & eversion movement of ankle Most effective gripping around ankle. Enhances comfort and walking pleasure Large enough room for ankle Unconventional, swollen or distorted ankles can be accommodated No compression hot spots on the ankle , so enhances comfort to injured ankle Reduces chances of sports related injuries in recurrent ankle problems Quick healing and better recovery of the fully immobilized ankle Molded Ethafoam Foam Pad Provides optimal compression and pressure Good cushioning , enhances comfort Skin friendly Ergonomic design Light in weight - enhance compliance Bilateral symmetry - can be used for either ankle Neoprene sleeves - good cushioning ,reduce pressure of gripping straps One size fits all Molded splint with perfect anatomy Pleasing aesthetics Sleek can be used inside the shoe Effective immobilization. Ankle Splint Measurements Measure circumference approx 2 inches above the ankle joint. Size Chart - Size Inches CM Universal 7.2-12 18-30
wheelchairindia9

Tynor Wrist and Forearm Splint Right-Left - 0 views

  •  
    Tynor Wrist and Forearm Splint Right-Left Wrist and Forearm Splint is designed to immobilize and provide firm and comfortable support to hand and wrist in various orthopedic conditions. It maintains the wrist in the functional position. Aesthetically appealing. Customizable splint. Perfect immobilization. Controlled compression. Anatomical thumb opening. Tynor Wrist and Forearm Splint Right-Left Features Made out of PUF fused Matty fabric Breathable Excellent aesthetics Improved comfort Enhanced life. Removable, Aluminum Splints Customized fitting Required degree of dorsi-flexion can be achieved Very good grip and immobilization Design features Long length of the brace, ensures enhanced immobilization Brace abuts the Palmer crease , allows free finger movement. Elegant tabs , allow easy application and removal Elegant tabs, also enhance the aesthetics of the product. Black Color, enhances the aethetics Hook loop closures Easy to apply and remove Ensures optimal compression , Built in opening for thumb abduction Better pain relief and healing. Thumb remains relaxed, no fatigue Improves comfort Tynor Wrist and Forearm Splint Right-Left Measurements Measure the Circumference at a distance 6" from the wrist along the arm
wheelchairindia9

Wrist Splint with Thumb Support - 0 views

  •  
    Tynor Wrist & Forearm Splint Right/Left is designed to provide comfortable and firm support to the wrist as well as to the forearm. It effectively works during various orthopedic conditions. It will keep the wrist in the functional position and speed up the recovery process. It will feel comfortable and relieved after applying this wrist and forearm support. The PUF fused fabric provide comfortable and smooth feel which does not cause any rashes on the skin. It allows proper ventilation system to the skin area and also the skin to breathe properly. It has aluminum splints which are easy to remove and apply as well as offers a better grip and a snug fit. It also has long length that will permit the easy movement. This brace enables free finger movement. It has a hook loop closure system which provides optimal compression and it can easily adjust it as per the requirement. Its brace has an in-built thumb opening which keeps the thumb relaxed and free from pressure. Tynor Wrist & Forearm Splint (Right/Left) Wrist and Forearm Splint is designed to immobilize and provide firm and comfortable support to hand and wrist in various orthopedic conditions. It maintains the wrist in the functional position. Aesthetically appealing. Customizable splint. Perfect immobilization. Controlled compression. Anatomical thumb opening. Tynor Wrist & Forearm Splint (Right/Left) Features Made out of PUF fused Matty fabric Breathable Excellent aesthetics Improved comfort Enhanced life. Removable, Aluminum Splints Customized fitting Required degree of dorsi-flexion can be achieved Very good grip and immobilization Design features Long length of the brace, ensures enhanced immobilization Brace abuts the Palmer crease , allows free finger movement. Elegant tabs , allow easy application and removal Elegant tabs, also enhance the aesthetics of the product. Black Color, enhances the aethetics Hook loop closures Easy to apply and remove Ensures optimal compre
wheelchairindia9

Easily Adjust Wrist & Forearm Splint with Thumb - 0 views

  •  
    Wrist and Forearm Splint is designed to immobilize and provide firm and comfortable support to hand and wrist in various orthopedic conditions. It maintains the wrist in the functional position. Tynor's Wrist & Forearm Splint Right/Left Extra Large is made out of very sturdy PUF fused fabric & malleable, anatomically shaped splints. Designed for perfect support & immobilization of wrist & forearm. Tynor Wrist & Forearm Splint Right/Left is designed to provide comfortable and firm support to the wrist as well as to the forearm. It effectively works during various orthopedic conditions. It will keep the wrist in the functional position and speed up the recovery process. It will feel comfortable and relieved after applying this wrist and forearm support. The PUF fused fabric provide comfortable and smooth feel which does not cause any rashes on the skin. It allows proper ventilation system to the skin area and also the skin to breathe properly. It has aluminum splints which are easy to remove and apply as well as offers a better grip and a snug fit. It also has long length that will permit the easy movement. This brace enables free finger movement. It has a hook loop closure system which provides optimal compression and it can easily adjust it as per the requirement. Its brace has an in-built thumb opening which keeps the thumb relaxed and free from pressure. Wrist and Forearm Splint is designed to immobilize and provide firm and comfortable support to hand and wrist in various orthopedic conditions. It maintains the wrist in the functional position. Aesthetically appealing. Customizable splint. Perfect immobilization. Controlled compression. Anatomical thumb opening. Tynor Wrist & Forearm Splint (Right/Left) Features Made out of PUF fused Matty fabric Breathable Excellent aesthetics Improved comfort Enhanced life. Removable, Aluminum Splints Customized fitting Required degree of dorsi-flexion can be achieved Very good grip and immobilizat
wheelchairindia9

Wrist and Forearm Splints Causes and Recovery Period | Health | Article Point - 0 views

  •  
    Wrist and forearm splints may be suggested for people with weak wrists or for those that have been previously injured, for tendonitis wrist support and even as a preventative for those who awaken in the morning with pain or numbness after sleeping on their hands at night. The best orthopedic wrist braces for carpal tunnel syndrome, occupational stabilization and relief from the pain of wrist strains and sprains. This Right hand wrist and forearm splint from tynor is meant to be used among patients suffering from any injury or sprain in these regions. The splint is meant to provide controlled compression in various orthopaedic conditions. The splint immobilizes the area that helps in a speedier recovery. It has anatomical thumb opening that allows free movement of the thumb. It provides a lot of comfort and is easily breathable. Forearm splint is the term used to describe the forearm pain similarly the pain of lower leg over the shin is known as shin splints. Forearm splint describes the painful disease of elbow or wrist joint. Continuous pain in forearm is often caused by tendonitis, joint injury or hairline fracture of forearm bones (proximal radius or ulna near elbow joint). Overstretching of the elbow joint often causes forearm injury. Symptoms consist of a dull pain in the forearm. Pain is minor initially but increases as activity continues. Often pin-pointed to the dorsal or back of the hand side of the forearm, mid-way between the wrist and elbow. The patient may experience weakness in the wrist extensor muscles and tenderness deep in the forearm. Pain may be reproduced by attempting to bend the wrist backwards against resistance. They provided wrist splints are used in different medical institutions and hospitals for management of hand fractures. Our offered wrist splints are manufactured by skilled professionals using optimum quality basic material and advanced technology as per the set norms of market. As well, these wrist splints can be availed in v
wheelchairindia9

Tynor Foot Drop Splint Right-Left - 0 views

  •  
    Tynor Foot Drop Splint Right/Left Applications Prevention and correction of foot drop. Peripheral nerve paralysis. Nerve/Muscle damage. Ankle or Plantar flexion contracture. Functional Alignment of the foot. Post operative care. Burn patients. Tynor Foot Drop Splint Right/Left Features Effective foot lift. Strong leaf spring action. Customizable. Thin walled, worn in a shoe. Tynor Foot Drop Splint Right/Left Measurements Measure shoe size Size Chart - Sizes European American Small 34-36 2.8-4.4 Medium 37-39 5.3-6.8 Large 40-42 7.5-9.0
wheelchairindia9

Tynor Ankle Binder - 0 views

  •  
    The boot type walkers can be provided in a fixed mode or with ankle joints to provide articulation. Pneumatic support is also available. The brace has a lightweight, durable, semi rigid shell that will support the limb and provide protection. Incorporated are medial and lateral uprights, heel and rocker sole. Closure is achieved with Velcro. The strapping system provides full circumferential compression of the limb. The breathable fiber liner is washable. The articulated boot allows range of motion (ROM) usually from approximately 20 degrees dorsiflexion to 40 degrees plantar flexion. Tynor Walker Boot is designed by the Tynor to rehabilitate the person after injury or fracture. It allows easy movement as well as supports the ankle and leg. This can be a great substitute for cast and also useful during early cast removal. It can also be used during sprain in the foot and this walker gives great relief to the pain. It can easily do any mild activity. It also works for the persons with a lower leg and will give an equal level of the lower feet as well as reduces the pressure. It effectively enclosed the muscles of the leg or foot during the fracture and gives comfort without disturbing the recovery process. This walker boot is made up from the good quality material. It has Aluminum lateral bars that are corrosion free. It is light in weight and provides enhanced mobility. It gives sturdy support to feet and leg. Its Hook Loop system allows to adjust it according to the comfort. It is also infused with Foam liner and Pad set that gives soft feet and also provides great support. It is available in different sizes. Tynor Walker Boot is designed for rehabilitation after injury, fracture , sprains or surgery of foot, ankle or lower leg. The boots provide support to the ankle and leg without inhibiting mobility. They can be a substitute for cast or can be used in case of early cast removal. With a wider rocker bottom, these boots promote a natural gait, reduced
wheelchairindia9

Tynor Walker Boot - 0 views

  •  
    Tynor Walker Boot is designed by the Tynor to rehabilitate the person after injury or fracture. It allows easy movement as well as supports the ankle and leg. This can be a great substitute for cast and also useful during early cast removal. It can also be used during sprain in the foot and this walker gives great relief to the pain. It can easily do any mild activity. It also works for the persons with a lower leg and will give an equal level of the lower feet as well as reduces the pressure. It effectively enclosed the muscles of the leg or foot during the fracture and gives comfort without disturbing the recovery process. This walker boot is made up from the good quality material. It has Aluminum lateral bars that are corrosion free. It is light in weight and provides enhanced mobility. It gives sturdy support to feet and leg. Its Hook Loop system allows to adjust it according to the comfort. It is also infused with Foam liner and Pad set that gives soft feet and also provides great support. It is available in different sizes. Tynor Walker Boot Tynor Walker Boot is designed for rehabilitation after injury, fracture , sprains or surgery of foot, ankle or lower leg. The boots provide support to the ankle and leg without inhibiting mobility. They can be a substitute for cast or can be used in case of early cast removal. With a wider rocker bottom, these boots promote a natural gait, reduced plantar pressure, enhanced stability and comfort to the lower leg. Light weight. Sturdy Support. Enhanced mobility. Maintains normal gait. Tynor Walker Boot Features Moulded foot Improves gait Rocker sole-helps in easy ambulation Offers stabilization of the foot ankle and the lower leg Comfortable positioning and protection of the foot Aluminum lateral bars Rigid support-Improved immobilization of the ankle and the lower leg Malleable, shape can be customized for better fitting and support Foam liner and Pad set Ensure extreme comfort Ensure per
wheelchairindia9

Tynor Hot and Cold Pack - 0 views

  •  
    Tynor Hot and Cold Pack is a convenient device to provide hot fomentation or cold compress. Hot fomentation of the injured or inflamed area enhances the threshold of pain and thus reduces the perception of pain. It has a synergistic effect along with pain relieving drugs. Raising temperature of the injured tissue also enhances the blood profusion and the healing process. Hot fomentation has a relaxing effect. Cold compress helps in reduction of inflammation in injuries, protects by slowing the metabolic rate around the tissue, reduce oedema and bleeding. Cold compress helps in immediately lowering fever, in very high fever conditions. It can be used after an acute injury or surgical procedure. No heat or cryo burns. Requires no holding. Reusable. Easy application. Appealing aesthetics. Tynor Hot and Cold Pack Features Multi functionality Reduce swelling and odema at the site of injury. Muscles spasm and pain. Headache and minor injuries. Versatile design Can be used as either cold or hot pack. Reusable in either hot & cold condition. Temperature range - Can be used from 0 Cº to 75Cº. Longer temperature retention time. Fabric cover ensures no cryo burns or hot skin burns. Physical features Non-toxic, and biodegradable. Gel remains soft and flexible upto 0 degree. Durable, and puncture resistant. Soft, "frost free" PVC cover. Flexible conforms to the body contours. Easy to clean and maintain. Excellent workmanship. Good aesthetics. Elastic belt Holds the pack against the body, No need to hold by hand. Enhances convenience. Tynor Hot and Cold Pack Measurements
wheelchairindia9

Tynor Pattelar Support - 0 views

  •  
    Tynor Pattelar Support Patellar support is designed to lift the patella and alleviate symptoms of pain, inflammation and discomfort associated with knee degeneration, without restricting circulation. Anatomically shaped Pad Enhanced Propioception Skin-friendly materials Customized compression. Tynor Pattelar Support Features Anatomical pad design Lifts and positions the patella properly Optimal compression of the patellar tendon Ensures strong grip of the product Silicon material of pad. Absorbs all the vibrations around the patella and the patellar tendon. Provides comfortable compression to the patellar tendon. Support the patella. Nodular surface Propioception Provides good massage Enhances blood circulation to the area Enhances healing Reverse buckle design One size fits all Provides customized compression Easy to wear. Tynor Pattelar Support Measurements Size Chart - Size Inches CM Universal 12 to 20 30 to 50
Nathan Goodyear

Interleukin‐2 enhances the natural killer cell response to Herceptin‐coated H... - 1 views

  • administration of low‐dose IL‐2 results in expansion of a CD3– / CD56+ NK cell population in patients with advanced cancer
  • approximately 20 % will overexpress theHer2 / neu proto‐oncogene
  • In breast cancer, Her2 / neu overexpression is associated with a worse histologicalgrade, decreased relapse‐free and overall survival periods, and altered sensitivity to chemotherapeutic regimens
  • ...17 more annotations...
  • NK cells are large granular lymphocytes that comprise approximately 10 % of circulating lymphocytes
  • all human NK cells express the CD56 antigen
  • treatment with various concentrations of IL‐2 in vivo may induce distinct functions within the NK cell compartment and, therefore, may have profound effects on NK cell‐mediated cytotoxicity
  • CD56bright
  • CD56dim
  • We show here that ADCC conducted by NK cells in vitro is enhanced by IL‐2 activation and is critically dependent on interactions between FcγRIII on NK cells and Herceptin‐coated tumor targets
  • administration of low‐dose IL‐2 to patients results in the marked expansion of a CD56+ population of immune effectors with the ability to lyse antibody‐coated cancer targets
  • NK cells represented only 7 % of lymphocytes prior to therapy but comprised over 50 % of the population after 10 weeks of low‐dose IL‐2
  • These data suggest that the enhanced ADCC seen following the expansion of NK cells with low‐dose IL‐2 is likely due to an increase in the overall number of NK cells
  • co‐administration of IL‐2 with rhu4D5 mAb will enhance activation of NK cell effector functions
  • Stimulation of NK cells with IL‐2 resulted in a significant increase in the lysis of rhu4D5‐coated targets
  • We have shown that costimulation with IL‐2 plus rhu4D5 results in significant production of IFN‐γ by NK cells with concomitant up‐regulation of cell‐surface activation and adhesion molecules
  • It has been previously demonstrated that continuous low‐dose IL‐2 can expand a CD56+ lymphocyte population, and we have now shown that this cell population is a potent mediator of ADCC against rhu4D5 mAb‐coated Her2 / neu+ targets
  • These results suggest that administration of low‐dose IL‐2 can be used to expand NK cell numbers, while higher doses may be used to enhance their cytolytic capacity in the setting of mAb therapy
  • we have demonstrated that NK cell lysis of Her2 / neu+ breast cancer cell lines in the presence of rhu4D5 mAb is markedly enhanced following stimulation with IL‐2
  • we have presented evidence that administration of low‐dose IL‐2 in vivo results in the expansion of a potent NK cell effector population
  • Our experiments suggest that NK cells costimulated with IL‐2 and immobilized IgG can secrete potent immunomodulatory cytokines which may serve to potentiate the anti‐tumor immune response.
  •  
    low dose IL-2 found to expand NK levels in conjuction in with herceptin in HER-2 positive breast cancer cell lines.
Nathan Goodyear

The impact of the microbiome in cancer: Targeting metabolism of cancer cells and host -... - 0 views

  •  
    Studies have found that high-salt diet can enhance the function of natural killer (NK) cells by enriching the abundance of Bifidobacterium, thus inhibiting tumor growth (63). High dietary fiber can enrich A. muciniphila, activate innate immunity, reshape the tumor microenvironment, and exert the function of inhibiting tumor (64). Notably, Wargo et al. have confirmed that high-dietary fiber diet can enhance anti-tumor immunity and increase the infiltration of tumor-killing T cells, while commercial probiotics treatment alone does not enhance the efficacy of immunotherapy. This study suggests that probiotics intervention is strain-specific and should be put in a specific dietary environment to make sense, to some extent (65).
Nathan Goodyear

Anticancer mechanisms of cannabinoids - 0 views

  • modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival
  • cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals
  • Cannabis sativa L. (marijuana)
  • ...41 more annotations...
  • of the approximately 108 cannabinoids produced by C. sativa, Δ9-tetrahydrocannabinol (thc) is the most relevant because of its high potency and abundance in plant preparations
  • Tetrahydrocannabinol exerts a wide variety of biologic effects by mimicking endogenous substances—the endocannabinoids anandamide3 and 2-arachidonoylglycerol4,5—that engage specific cell-surface cannabinoid receptors
  • the cb2 receptor was initially described to be present in the immune system6, but was more recently shown to also be expressed in cells from other origins
  • transient receptor potential cation channel subfamily V, member 1
  • orphan G protein–coupled receptor 55
  • Most of the effects produced by cannabinoids in the nervous system and in non-neural tissues rely on cb1 receptor activation
  • two major cannabinoid-specific receptors—cb1 and cb2
  • cardiovascular tone, energy metabolism, immunity, and reproduction
  • cannabinoids are well known to exert palliative effects in cancer patients
  • best-established use is the inhibition of chemotherapy-induced nausea and vomiting
  • thc and other cannabinoids exhibit antitumour effects in a wide array of animal models of cancer
  • cannabinoid receptors and their endogenous ligands are both generally upregulated in tumour tissue compared with non-tumour tissue
  • cb2 promotes her2 (human epidermal growth factor receptor 2) pro-oncogenic signalling in breast cancer
  • pharmacologic activation of cannabinoid receptors decreases tumour growth
  • endocannabinoid signalling can also have a tumour-suppressive role
  • pharmacologic stimulation of cb receptors is, in most cases, antitumourigenic. Nonetheless, a few reports have proposed a tumour-promoting effect of cannabinoids
  • most prevalent effect is the induction of cancer cell death by apoptosis and the inhibition of cancer cell proliferation
  • impair tumour angiogenesis and block invasion and metastasis
  • thc and other cannabinoids induce the apoptotic death of glioma cells by cb1- and cb2-dependent stimulation
  • Autophagy is primarily a cytoprotective mechanism, although its activation can also lead to cell death
  • autophagy is important for cannabinoid antineoplastic activity
  • autophagy is upstream of apoptosis in the mechanism of cannabinoid-induced cell death
  • the effect of cannabinoids in hormone- dependent tumours might rely, at least in part, on the ability to interfere with the activation of growth factor receptors
  • glioma cells), pharmacologic blockade of either cb1 or cb2 prevents cannabinoid-induced cell death with similar efficacy
  • other types of cancer cells (pancreatic48, breast24, or hepatic43 carcinoma cells, for example), antagonists of cb2 but not of cb1 inhibit cannabinoid antitumour actions
  • thc promotes cancer cell death in a cb1- or cb2-dependent manner (or both) at lower concentrations
  • cannabidiol (cbd), a phytocannabinoid with a low affinity for cannabinoid receptors15, and other marijuana-derived cannabinoids57 have also been proposed to promote the apoptotic death of cancer cells acting independently of the cb1 and cb2 receptors
  • In cancer cells, cannabinoids block the activation of the vascular endothelial growth factor (vegf) pathway, an inducer of angiogenesi
  • In vascular endothelial cells, cannabinoid receptor activation inhibits proliferation and migration, and induces apoptosis
  • cb1 or cb2 receptor agonists (or both) reduce the formation of distant tumour masses in animal models of both induced and spontaneous metastasis, and inhibit adhesion, migration, and invasiveness of glioma64, breast65,66, lung67,68, and cervical68 cancer cells in culture
  • the ceramide/p8–regulated pathway plays a general role in the antitumour activity of cannabinoids targeting cb1 and cb2
  • cbd, by acting independently of the cb1 and cb2 receptors, produces a remarkable anti-tumour effect—including reduction of invasiveness and metastasis
  • cannabinoids can also enhance immune system–mediated tumour surveillance in some contexts
  • ability of thc to reduce inflammation75,76, an effect that might prevent certain types of cancer
  • recent observations suggest that the combined administration of cannabinoids with other anticancer drugs acts synergistically to reduce tumour growth
  • combined administration of gemcitabine (the benchmark agent for the treatment of pancreatic cancer) and various cannabinoid agonists synergistically reduced the viability of pancreatic cancer cells
  • Other reports indicated that anandamide and HU-210 might also enhance the anticancer activity of paclitaxel89 and 5-fluorouracil90 respectively
  • Combined administration of thc and cbd enhances the anticancer activity of thc and reduces the dose of thc needed to induce its tumour growth-inhibiting activity
  • Preclinical animal models have yielded data indicating that systemic (oral or intraperitoneal) administration of cannabinoids effectively decreases tumour growth
  • Combinations of cannabinoids with classical chemotherapeutic drugs such as the alkylating agent temozolomide (the benchmark agent for the management of glioblastoma80,84) have been shown to produce a strong anticancer action in animal models
  • pharmacologic inhibition of egfr, erk83, or akt enhances the cell-death-promoting action of thc in glioma cultures (unpublished observations by the authors), which suggests that targeting egfr and the akt and erk pathways could enhance the antitumour effect of cannabinoids
  •  
    Good review of the anticancer effects of cananbinoids.
Nathan Goodyear

Cortisol Exerts Bi-Phasic Regulation of Inflammation in Humans - 0 views

  • GCs induce increased cellular expression of receptors for several pro-inflammatory cytokines including interleukin (IL)-1 (Spriggs et al. 1990), IL-2 (Wiegers et al. 1995), IL-4 (Paterson et al. 1994), IL-6 (Snyers et al. 1990), and IFN-g (Strickland et al. 1986), as well as GM-CSF
  • GCs have also been shown to stimulate effector cell functions including phagocytosis by monocytes (van der Goes et al. 2000), effector cell proliferative responses (Spriggs et al. 1990), macrophage activation (Sorrells and Sapolsky 2010), and a delay of neutrophil apoptosis
  • a concentration- and time-dependent range of GC effects that are both pro- and anti-inflammatory
  • ...13 more annotations...
  • basal (diurnal) concentrations of cortisol do not exert an anti-inflammatory effect on several pro-and anti-inflammatory mediators of the human immune inflammatory response
  • withdrawal of cortisol activity in vivo did not lead to increased inflammatory responsiveness of immune effector cells
  • maximal suppression of inflammation was achieved by a stress-associated, but still physiologic, cortisol concentration. There was no greater anti-inflammatory effect at higher cortisol concentrations (Yeager et al. 2005) although IL-10 concentrations continued to increase with increasing cortisol concentrations as we and others have shown
  • acutely, physiological cortisol concentrations are anti-inflammatory and, as proposed, act to limit over expression of an inflammatory response that could lead to tissue damage
  • Acutely, cortisol has anti-inflammatory effects following a systemic inflammatory stimulus (Figure 4). However, a cortisol concentration that acts acutely to suppress systemic inflammation also has a delayed effect of augmenting the inflammatory response to subsequent, delayed stimulu
  • 1) GCs can exert pro-inflammatory effects on key inflammatory processes and, 2) GC regulation of inflammation can vary from anti- to a pro-inflammatory in a time-dependent manner
  • The immediate in vivo effect of both stress-induced and pharmacological GC concentrations is to suppress concurrent inflammation and protect the organism from an excessive or prolonged inflammatory response
  • GCs alone, in the absence of an inflammatory stimulus, up-regulate monocyte mRNA and/or receptors for several molecules that participate in pro-inflammatory signaling, as noted above and in the studies presented here.
  • In humans, as shown here, if in vivo GC concentrations are elevated concurrent with an inflammatory stimulus, anti-inflammatory effects are observed
  • In sharp contrast, with a time delay of 12 or more hours between an increased GC concentration and the onset of an inflammatory stimulus, enhancing effects on inflammation are observed. These effects have been shown to persist in humans for up to 6 days
  • GC-induced enhancement of inflammatory responses is maximal at an intermediate concentration, in our studies at a concentration that approximates that observed in vivo following a major systemic inflammatory stimulus
  • In addition to enhanced responses to LPS, recently identified pro-inflammatory effects of GCs also show enhanced localization of effector cells at inflammatory sites
  • we hypothesize that pre-exposure to stress-associated cortisol concentrations “prime” effector cells of the monocyte/macrophage lineage for an augmented pro-inflammatory response by; a) inducing preparative changes in key regulators of LPS signal transduction, and b) enhancing localization of inflammatory effector cells at potential sites of injury
  •  
    very interesting read on the effects of inflammation on cortisol and visa versa.
wheelchairindia9

Tynor Knee Cap Comfeel - 0 views

  •  
    Tynor Knee Cap Comfeel Knee cap comfeel is a next generation tubular product knitted on a 3 dimensional computer controlled circular looms to provide mild compression, warmth and support to the knee joint. It is used to allay pain and inflammation, generally associated with old age, arthritis or injury. Soft Patella Fine grip at the edges Four way stretch Uniform compression Simple pull on application. Tynor Knee Cap Comfeel Features Anatomically shaped and reduced compression on patella No Chondromalacia on prolonged use Better compression and grip Easy knee movement Improved comfort Bi-layered, cotton on the inside , a dermophillic interphase Enhanced comfort Better sweat absorption Better patient compliance. Bilayered, nylon on the outside Ensures long life Excellent aesthetics Color fastness. Four-way stretchable fabric Effective compression Enhanced comfort. Two layered with interwoven air space Retains body heat effectively. Speeds up healing Allays pain. Tynor Knee Cap Comfeel Measurements Measure circumference around mid thigh - approx 6 inches above knee Size Chart - Size Inches CM Small 14.8-17.2 37-43 Medium 17.2-19.6 43-49 Large 19.6-22 49-55 XL 22-24.4 55-61
wheelchairindia9

Tynor Anklet Pair - 0 views

  •  
    Tynor Anklet (Pair) Anklets are tubular supports widely used in orthopedic practice to provide mild compression, warmth & support to the ankle joint, to allay pain and inflammation generally associated with old age, arthritis, sports etc. Four way stretch Two layered fabric Hypoallergenic Uniform compression Simple pull on application Tynor Anklet (Pair) Features Bilayered , cotton on the inside Dermophillic interpahse with the skin Better sweat absorption Better comfort Better patient compliance. No allergies or rash Bilayered, nylon on the outside Ensures long life Excellent aesthetics Color fastness. Two layers enclose air space retains body heat effectively Provides therapeutic warmth and assuring support to the knee. Four-way stretchable seamless tubular fabric Effective compression Enhanced comfort. No vaso constriction. Adjusts compression even on uneven diameters Simple pull on application improves patient compliance. Tynor Anklet (Pair) Measurements Measure circumference approx 2 inches above the ankle joint. Size Chart - Size Inches CM Small 7.2-8.4 18-21 Medium 8.4-9.6 21-24 Large 9.6-10.8 24-27 XL 10.8-12 27-30
1 - 20 of 353 Next › Last »
Showing 20 items per page