Skip to main content

Home/ Dr. Goodyear/ Group items tagged insulin receptor substrate

Rss Feed Group items tagged

Nathan Goodyear

Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 di... - 0 views

  • up to 40% of men with T2DM have testosterone deficiency
  • Among diabetic patients, a reduction in sex hormone binding globulin levels induced by insulin resistance leads to a further decline of testosterone levels
  • low bioavailable testosterone concentration was related to decreased lean body mass and muscle strength
  • ...13 more annotations...
  • Testosterone deficiency has a high prevalence in men with T2DM, and it is also associated with impaired insulin sensitivity, increased percentage body fat, central obesity, dyslipidemia, hypertension and cardiovascular diseases (CVD)
  • A meta-analysis of four randomized controlled trials (RCTs) showed that TRT seemed to improve glycemic control as well as fat mass in T2DM subjects with low testosterone levels and sexual dysfunction.
  • testosterone administration could increase muscle mass and strength
  • Insulin stimulates glucose uptake into muscle and adipose tissue via the Glut4 glucose transporter isoform. When insulin activates signaling via the insulin receptor, Glut4 interacts with insulin receptor substrate 1 to initialize intracellular signaling and facilitate glucose transportation into the cell
  • The benefits of TRT on glucose metabolism can mainly be explained by its influence on the insulin signaling pathway
  • Insulin resistance as assessed by, which is calculated from the equation (If*Gf/22.5, where If is fasting insulin and Gf is fasting glucose), was definitely improved by TRT after testosterone administration in three studies
  • Testosterone was observed to elevate the expression levels and stimulate translocation of Glut4 in cultured skeletal muscle cells and to upregulate Glut4 by activating insulin receptor signaling pathways in neonatal rats
  • These effects were inhibited by a dihydrotestosterone (DHT) blocker, indicating that glucose uptake may correlate with conversion of testosterone to DHT and activation of the androgen receptor.
  • TRT reduced triglyceride levels
  • TRT has been reported to have a positive effect in the decrease of total and LDL cholesterol levels and triglycerides in hypogonadal men
  • a recent meta-analysis showed that statins could significantly lower testosterone concentrations.
  • Epidemiological studies have found a negative relationship between testosterone levels and typical cardiovascular risk markers, such as body mass index, waist circumference, visceral adiposity and carotid intima-media thickness.
  • Testosterone treatment was shown to raise hemoglobin, hematocrit and thromboxane, all of which might give rise to CVD
  •  
    Low Testosterone is a very significant problem in men with type II Diabetes.  Estimated to reach 40%, likely much higher.  They based these estimates only on T levels and sexual symptoms. Testosterone improves glycemic control primarily through Increased transcription and transloction of GLUT4 insulin receptors to the cell surface.  Inflammation reduction is also a mechanism.  Testosteorne lowers Triglycerides in the traditional lipid profile.  Studies are mixed on the other aspects of  lipids.  
Nathan Goodyear

Hypoxia Regulates Insulin Receptor Substrate-2 Expression to Promote Breast Carcinoma C... - 0 views

  •  
    IRS-2 expression, but not IRS-1 expression, is increased by hypoxia (HIF-1alpha), which selects for tumor cells with increased metastatic potential. IRS-2 is active to mediate insulin-like growth factor I-dependent signals in hypoxia, and enhanced activation of Akt in hypoxia is dependent on IRS-2 expression. It is Akt that increases insulin receptor expression. This ties hypoxia to increase in insulin signaling and insulin receptor expression. Boom!
Nathan Goodyear

ScienceDirect.com - Cell Metabolism - Estrogen Receptors and the Metabolic Network - 0 views

  • The pro-opiomelanocortin (POMC) neurons have an anorexigenic action and, when activated, reduce food intake through the release of two peptides, α-melanocyte-stimulating hormone (α-MSH) and cocaine-and-amphetamine-regulated transcripts (CART). The neuropeptide Y (NPY) neurons, on the other hand, release NPY hormone and agouti gene-related protein (AgRP), which prevent the binding of α-MSH to MC3R and MC4R, increasing food intake
  • This suggests that the central anorexic effects of E2 may occur via ERβ
  • The main hypothalamic areas involved in food intake and satiety are the arcuate nucleus (ARC), the lateral hypothalamus (LH), the paraventricular nucleus (PVN), the ventromedial hypothalamus (VMH), and the dorsomedial hypothalamus (DMH)
  • ...22 more annotations...
  • Leptin is a potent anorexigenic and catabolic hormone secreted by adipose cells that reduces food intake and increases energy expenditure
  • E2 not only modulates leptin receptor mRNA in the ARC and VMH, but also increases hypothalamic sensitivity to leptin, altering peripheral fat distribution
  • ghrelin. It acts on growth hormone secretagogue receptors (GHSR1a) located in the ARC and is a potent stimulator of food intake
  • It thus appears that of the two ERs, ERα plays a predominant role in the CNS regulation of lipid and carbohydrate homeostasis.
  • Both ERs have been identified in the ARC
  • Stimulation of MCH neurons increases food intake and fat accumulation while its inhibition leads to decreased food intake and reduced fat accumulation.
  • Both ERs have been identified in the LH
  • both ERs have been identified in this nucleus
  • The PVN is the region of the hypothalamus with the highest expression of ERβ and is reported to be weakly ERα positive
  • The VMH is ERα regulated
  • Skeletal muscle is responsible for 75% of the insulin-induced glucose uptake in the body
  • GLUT4 is highly expressed in muscle and represents a rate-limiting step in the insulin-induced glucose uptake
  • data suggest that in the physiological range, E2 is beneficial for insulin sensitivity, whereas hypo- or hyperestrogenism is related to insulin resistance
  • In aging female rats, E2 treatment improves glucose homeostasis mainly through its ability to increase muscle GLUT4 content on the cell membrane
  • It is evident that ERα and ERβ have distinct actions and that much more research is needed to clearly identify the function of each receptor in muscle.
  • E2 prevents accumulation of visceral fat, increases central sensitivity to leptin, increases the expression of insulin receptors in adipocytes, and decreases the lipogenic activity of lipoprotein lipase in adipose tissue
  • In rats, ovariectomy increases body weight, intra-abdominal fat, fasting glucose and insulin levels, and insulin resistance followed by decreased phosphorylation of AMPK and its substrate acetyl-CoA carboxylase in adipose tissue
  • decreased adiponectin, PPARγ coactivator-1α (PGC-1α), and uncoupling protein 2 (UCP2) and increased resistin
  • Men with aromatase deficiency have truncal obesity, elevated blood lipids, and severe insulin resistance
  • Although not all studies are in agreement, polymorphisms of ERα in humans have been associated with risk factors for CVDs
  • Human subcutaneous and visceral adipose tissues express both ERα and ERβ, whereas only ERα mRNA has been identified in brown adipose tissue
  • suggesting that ERα is the main regulator of GLUT4 expression in adipose tissue
  •  
    very nice article that looks at the balance of ER-alpha/ER-beta and their role in metabolic syndrome.  This article discusses the balance of  these receptors are tissue dependent in their effect.  I like their conclusion: "...but these mechanisms will never be completely understood if they are not considered in the context of a whole system.
Nathan Goodyear

Nutrition & Metabolism | Full text | Fructose, insulin resistance, and metabolic dyslip... - 0 views

  • For thousands of years humans consumed fructose amounting to 16–20 grams per day
  • daily consumptions amounting to 85–100 grams of fructose per day
  • Of key importance is the ability of fructose to by-pass the main regulatory step of glycolysis, the conversion of glucose-6-phosphate to fructose 1,6-bisphosphate, controlled by phosphofructokinase
  • ...29 more annotations...
  • Thus, while glucose metabolism is negatively regulated by phosphofructokinase, fructose can continuously enter the glycolytic pathway. Therefore, fructose can uncontrollably produce glucose, glycogen, lactate, and pyruvate, providing both the glycerol and acyl portions of acyl-glycerol molecules. These particular substrates, and the resultant excess energy flux due to unregulated fructose metabolism, will promote the over-production of TG (reviewed in [53]).
  • Glycemic excursions and insulin responses were reduced by 66% and 65%, respectively, in the fructose-consuming subjects
  • reduction in circulating leptin both in the short and long-term as well as a 30% reduction in ghrelin (an orexigenic gastroenteric hormone) in the fructose group compared to the glucose group.
  • A prolonged elevation of TG was also seen in the high fructose subjects
  • Both fat and fructose consumption usually results in low leptin concentrations which, in turn, leads to overeating in populations consuming energy from these particular macronutrients
  • Chronic fructose consumption reduces adiponectin responses, contributing to insulin resistance
  • A definite relationship has also been found between metabolic syndrome and hyperhomocysteinemia
  • the liver takes up dietary fructose rapidly where it can be converted to glycerol-3-phosphate. This substrate favours esterification of unbound FFA to form the TG
  • Fructose stimulates TG production, but impairs removal, creating the known dyslipidemic profile
  • the effects of fructose in promoting TG synthesis are independent of insulinemia
  • Although fructose does not appear to acutely increase insulin levels, chronic exposure seems to indirectly cause hyperinsulinemia and obesity through other mechanisms. One proposed mechanism involves GLUT5
  • If FFA are not removed from tissues, as occurs in fructose fed insulin resistant models, there is an increased energy and FFA flux that leads to the increased secretion of TG
  • In these scenarios, where there is excess hepatic fatty acid uptake, synthesis and secretion, 'input' of fats in the liver exceed 'outputs', and hepatic steatosis occurs
  • Carbohydrate induced hypertriglycerolemia results from a combination of both TG overproduction, and inadequate TG clearance
  • fructose-induced metabolic dyslipidemia is usually accompanied by whole body insulin resistance [100] and reduced hepatic insulin sensitivity
  • Excess VLDL secretion has been shown to deliver increased fatty acids and TG to muscle and other tissues, further inducing insulin resistance
  • the metabolic effects of fructose occur through rapid utilization in the liver due to the bypassing of the regulatory phosphofructokinase step in glycolysis. This in turn causes activation of pyruvate dehydrogenase, and subsequent modifications favoring esterification of fatty acids, again leading to increased VLDL secretion
  • High fructose diets can have a hypertriglyceridemic and pro-oxidant effect
  • Oxidative stress has often been implicated in the pathology of insulin resistance induced by fructose feeding
  • Administration of alpha-lipoic acid (LA) has been shown to prevent these changes, and improve insulin sensitivity
  • LA treatment also prevents several deleterious effects of fructose feeding: the increases in cholesterol, TG, activity of lipogenic enzymes, and VLDL secretion
  • Fructose has also been implicated in reducing PPARα levels
  • PPARα is a ligand activated nuclear hormone receptor that is responsible for inducing mitochondrial and peroxisomal β-oxidation
  • decreased PPARα expression can result in reduced oxidation, leading to cellular lipid accumulation
  • fructose diets altered the structure and function of VLDL particles causing and increase in the TG: protein ratio
  • LDL particle size has been found to be inversely related to TG concentration
  • therefore the higher TG results in a smaller, denser, more atherogenic LDL particle, which contributes to the morbidity of the metabolic disorders associated with insulin resistance
  • High fructose, which stimulates VLDL secretion, may initiate the cycle that results in metabolic syndrome long before type 2 diabetes and obesity develop
  • A high flux of fructose to the liver, the main organ capable of metabolizing this simple carbohydrate, disturbs normal hepatic carbohydrate metabolism leading to two major consequences (Figure 2): perturbations in glucose metabolism and glucose uptake pathways, and a significantly enhanced rate of de novo lipogenesis and TG synthesis, driven by the high flux of glycerol and acyl portions of TG molecules coming from fructose catabolism
  •  
    Fructose and metabolic syndrome.  Good discussion of the impact of high fructose intake and metabolic dysfunction.  This study also does a great job of highlighting the historical change of fructose intake.
Nathan Goodyear

Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity - 0 views

  • acute GC secretion during stress mobilizes peripheral amino acids from muscle as well as fatty acids and glycerol from peripheral fat stores to provide substrates for glucose synthesis by the liver
  • chronically elevated GC levels alter body fat distribution and increase visceral adiposity as well as metabolic abnormalities in a fashion reminiscent of metabolic syndrome
  • This local production may play an important role in the onset of obesity and insulin resistance.
  • ...9 more annotations...
  • In adipocytes, cortisol inhibits lipid mobilization in the presence of insulin, thus leading to triglyceride accumulation and retention.
  • Since the density of GC receptors is higher in intra-abdominal (visceral) fat than in other fat depots, the activity of cortisol leading to accumulation of fat is accentuated in visceral adipose tissue (24, 158), providing a mechanism by which excessive endogenous or exogenous GC lead to abdominal obesity and IR
  • obese patients generally have normal or subnormal plasma cortisol concentrations
  • This may be explained by an increased intratissular/cellular concentration of cortisol in adipose tissues
  • Intracellular GC may be produced from recycling of GC metabolites such as cortisone in adipose tissues
  • Local GC recycling metabolism is mediated by 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2
  • Cortisol also increases 11β-HSD1 expression in human adipocytes
  • In humans, elevated 11β-HSD1 expression in visceral adipose tissue is also associated with obesity
  • even if obese patients generally have normal or subnormal plasma cortisol concentrations (131, 158), triglyceride accumulation in visceral adipose tissue may be due, at least in part, to the local production of GC in insulin- and GC-responsive organs such as adipose tissue, liver, and skeletal muscle
  •  
    another nice article on the dysregulation of cortisol and its role in insulin resistance, metabolic syndrome, and obesity.
Nathan Goodyear

Plant-Based Nutritional Supplementation Attenuates LPS-Induced Low-Grade Systemic Activ... - 0 views

  • consumption of this particular diet for at least a 2-month period helped to reduce the outcomes of both acute and chronic inflammation induced by LPS.
  • chronic inflammation compromised both glucose and insulin tolerance, which is normally seen in certain chronic metabolic diseases
  • LPS resulted in an increase in neopterin levels, which is a marker for immune system activation
  • ...6 more annotations...
  • diet enriched in fruits and vegetables (and consequently phytochemicals) was able to reverse the process and maintain and even elevate insulin sensitivity and glucose tolerance
  • LPS-mediated effects are related to an increase in TLR4 levels that triggers the activation of nuclear factor-kB (NF-kB), a transcription factor that activates a cascade of inflammatory mediators [41]. These factors control the transcription of inflammatory mediators, such as IL-1β, IL-6, TNF-α, TNF-β, INF-α, INFβ, INF-γ
  • Inflammation can alter insulin action and give rise to diabetes and obesity by blocking insulin receptor downstream events, impairing insulin receptor substrate 1 (IRS-1) activation and phosphatidylinositol 3-kinase-dependent (PI3K) pathways, therefore compromising insulin signaling
  • systemic inflammation (generated by LPS) also increased neopterin levels in the urine and resulted in altered neuronal activity by decreasing dopamine (DA) metabolism
  • an increase in neopterin levels has been recognized a sensitive biomarker for immune system activation
  • Our experiments denoted that these diets were able to diminish inflammatory mediators and oxidative damage
1 - 9 of 9
Showing 20 items per page