Skip to main content

Home/ COSEE-West/ Group items tagged dioxide

Rss Feed Group items tagged

Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

Science Friday Archives: Coral in Crisis - 0 views

  •  
    "Friday, December 14th, 2007 Coral in Crisis Bleached corals on coral reef on southern Great Barrier Reef in January 2002. Coral bleaching primarily affects reef building corals when conditions get too warm. Image © Science The world's coral reefs are in great danger, threatened by climate change and rising carbon dioxide levels. In an article published in the journal Science, researchers provide provide three different scenarios for the fate of reef-building corals worldwide as they face higher concentrations of atmospheric carbon dioxide and the related ocean acidification that slows coral calcification, the process needed for a reef to grow. Increasing CO2 levels have the potential to greatly shift the chemistry of ocean waters, threatening the existence of most coral species. "
Gwen Noda

Ocean acidification due to increasing atmospheric carbon dioxide - Publications - The R... - 0 views

  •  
    Carbon dioxide (CO2) emitted to the atmosphere by human activities is being absorbed by the oceans, making them more acidic (lowering the pH the measure of acidity).
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 1 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification."
Gwen Noda

Individual Emissions - Global Warming Wheel Card | Climate Change - Greenhouse Gas Emis... - 0 views

  •  
    - Welcome to the Global Warming Wheel Card Classroom Activity Kit (PDF) (2 pp, 2.4 MB, About PDF) - Instructions for Making a Global Warming Wheel Card (unassembled) (PDF) (5 pp, 2.4 MB, About PDF) - Guide for Teachers (including Teacher Notes on Activities) (PDF) (3 pp, 1.3 MB, About PDF) - Frequently Asked Questions About Global Warming and Climate Change: Back to Basics (PDF) (8 pp, 1.6 MB, About PDF) - Activity #1: Using the Global Warming Wheel Card (PDF) (2 pp, 1.4 MB, About PDF) - Homework for Activity #1: Electricity Use and Carbon Dioxide (PDF) (1 pp, 1.3 MB, About PDF) - Activity #2: What You and Your Community Can Do to Reduce Carbon Dioxide (PDF) (1 pp, 1.3 MB, About PDF) - Activity #3: A Simple Energy Audit (PDF) (3 pp, 1.3 MB, About PDF)
Gwen Noda

USC researcher experiments with changing ocean chemistry | 89.3 KPCC - 0 views

  •  
    "USC researcher experiments with changing ocean chemistry Jan. 19, 2011 | Molly Peterson | KPCC In his lab, USC's Dave Hutchins is simulating possible future atmospheres and temperatures for the Earth. He says he's trying to figure out how tiny organisms that form the base of the food web will react to a more carbon-intense ocean. Burning fossil fuels doesn't just put more carbon into the atmosphere and help warm the climate. It's also changing the chemistry of sea water. KPCC's Molly Peterson visits a University of Southern California researcher who studies the consequences of a more corrosive ocean. Tailpipes and refineries and smokestacks as far as the eye can see in Los Angeles symbolize the way people change the planet's climate. They remind Dave Hutchins that the ocean's changing too. Hutchins teaches marine biology at USC. He says about a third of all the carbon, or CO2, that people have pushed into earth's atmosphere ends up in sea water - "which is a good thing for us because if the ocean hadn't taken up that CO2 the greenhouse effect would be far more advanced than it is." He smiles. Hutchins says that carbon is probably not so good for the ocean. "The more carbon dioxide that enters the ocean the more acidic the ocean gets." On the pH scale, smaller numbers represent more acidity. The Monterey Bay Aquarium Research Institute estimates we've pumped 500 million tons of carbon into the world's oceans. Dave Hutchins at USC says that carbon has already lowered the pH value for sea water. "By the end of this century we are going to have increased the amount of acid in the ocean by maybe 200 percent over natural pre-industrial levels," he says. "So we are driving the chemistry of the ocean into new territory - into areas that it has never seen." Hutchins is one of dozens of scientists who study the ripples of that new chemistry into the marine ecosystem. Now for an aside. I make bubbly water at home with a soda machine, and to do that, I pump ca
Gwen Noda

COSEE NOW | Blog | Ocean Acidification - 0 views

  •  
    "As the amount of Carbon Dioxide continues to build up in the atmosphere it is also changing the chemistry of the ocean. Ocean surveys and modeling studies have revealed that the pH of the ocean is decreasing (which means the ocean is becoming more acidic) due to increasing concentrations of carbon dioxide. This changing oceanic environment will have severe implications for life in the ocean. COSEE NOW is pleased to present A plague in air and sea: Neutralizing the acid of progress a new audio slideshow that features Debora Inglesias-Rodriguez. In this scientist profile, Dr. Inglesias-Rodriguez, a Biological Oceanographer at the University of Southampton National Oceanography Centre, shares her story of how she grew up loving the ocean and became interested in science. She also explains how witnessing the effects of climate change has lead her to research how organisms like Sea Urchins are being affected by ocean acidification. Download A plague in air and sea: Neutralizing the acid of progress"
Gwen Noda

Ocean Acification Simulation - Interactive Earth - natural history education, website d... - 0 views

  •  
    Ocean Acification Simulation Ocean AcidificationI developed this Carbonate Simulation to enables students and teachers to visualize how changes in atmospheric temperature and carbon dioxide concentrations may affect levels of carbon dioxide levels and related chemistry of the oceans. The applet uses coral reefs as an example of organisms that may be particularly affected by these changes in water chemistry.
Gwen Noda

Guide to best practices for ocean acidification research and data reporting »... - 0 views

  •  
    1 The carbon dioxide system in seawater: equilibrium chemistry and measurements 1.1 Introduction 1.2 Basic chemistry of carbon dioxide in seawater 1.3 The definition and measurement of pH in seawater 1.4 Implications of other acid-base equilibria in seawater on seawater alkalinity 1.5 Choosing the appropriate measurement techniques 1.6 Conclusions and recommendations 2 Approaches and tools to manipulate the carbonate chemistry 3 Atmospheric CO2 targets for ocean acidification perturbation experiments 4 Designing ocean acidification experiments to maximise inference 5 Bioassays, batch culture and chemostat experimentation 6 Pelagic mesocosms 7 Laboratory experiments and benthic mesocosm studies 8 In situ perturbation experiments: natural venting sites, spatial/temporal gradients in ocean pH, manipulative in situ p(CO2) perturbations 9 Studies of acid-base status and regulation 9.1 Introduction 9.2 Fundamentals of acid-base regulation 9.3 Measurement of pH, total CO2 and non-bicarbonate buffer values 9.4 Compartmental measurements: towards a quantitative picture 9.5 Overall suggestions for improvements 10 Studies of metabolic rate and other characters across life stages 10.1 Introduction 10.2 Definition of a frame of reference: studying specific characters across life stages 10.3 Approaches and methodologies: metabolic studies 10.4 Study of early life stages 10.5 Techniques for oxygen analyses 10.6 Overall suggestions for improvements 10.7 Data reporting 10.8 Recommendations for standards and guidelines 11 Production and export of organic matter 12 Direct measurements of calcification rates in planktonic organisms 13 Measurements of calcification and dissolution of benthic organisms and communities 14 Modelling considerations 15 Safeguarding and sharing ocean acidification data 15.1 Introduction 15.2 Sharing ocean acidification data 15.3 Safeguarding ocean acidification data 15.4 Harmonising ocean acidification data and metadata 15.5 Disseminating ocean
Gwen Noda

The Southern Ocean's Role in Carbon Exchange During the Last Deglaciation - 0 views

  •  
    Abstract Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.
Gwen Noda

The Carbon Cycle - 0 views

  •  
    The Carbon Cycle What Goes Around Comes Around by John Arthur Harrison, Ph.D. Carbon is the fourth most abundant element in the universe, and is absolutely essential to life on earth. In fact, carbon constitutes the very definition of life, as its presence or absence helps define whether a molecule is considered to be organic or inorganic. Every organism on Earth needs carbon either for structure, energy, or, as in the case of humans, for both. Discounting water, you are about half carbon. Additionally, carbon is found in forms as diverse as the gas carbon dioxide (CO2), and in solids like limestone (CaCO3), wood, plastic, diamonds, and graphite.
Gwen Noda

Future CO2 Emissions and Climate Change from Existing Energy Infrastructure - 0 views

  •  
    "Slowing climate change requires overcoming inertia in political, technological, and geophysical systems. Of these, only geophysical warming commitment has been quantified. We estimated the commitment to future emissions and warming represented by existing carbon dioxide-emitting devices. We calculated cumulative future emissions of 496 (282 to 701 in lower- and upper-bounding scenarios) gigatonnes of CO2 from combustion of fossil fuels by existing infrastructure between 2010 and 2060, forcing mean warming of 1.3°C (1.1° to 1.4°C) above the pre-industrial era and atmospheric concentrations of CO2 less than 430 parts per million. Because these conditions would likely avoid many key impacts of climate change, we conclude that sources of the most threatening emissions have yet to be built. However, CO2-emitting infrastructure will expand unless extraordinary efforts are undertaken to develop alternatives. "
Gwen Noda

Science On a Sphere - 0 views

  •  
    Science On a Sphere Well-crafted visualizations provide unique and powerful teaching tools Science On a Sphere® is a large visualization system that uses computers and video projectors to display animated data onto the outside of a sphere. Researchers at NOAA developed Science On a Sphere® as an educational tool to help illustrate Earth System science to people of all ages. Animated images of complex processes such as ocean currents, sea level rise, and ocean acidification are used to to enhance the public's understanding of our dynamic environment. Ocean Acidification on Science On a Sphere® The movies below were developed for use on Science On a Sphere® and show computer model simulations of surface ocean pH and carbonate mineral saturation state for the years 1895 to 2094. The first movie shows a computer recreation of surface ocean pH from 1895 to the present, and it forecasts how ocean pH will drop even more between now and 2094. Dark gray dots show cold-water coral reefs. Medium gray dots show warm-water coral reefs. You can see that ocean acidification was slow at the beginning of the movie, but it speeds up as time goes on. This is because humans are releasing carbon dioxide faster than the atmosphere-ocean system can handle.
Gwen Noda

UnderwaterTimes.com | Ocean Probes To Help Refine Climate Change Forecastin - 0 views

  •  
    Ocean Probes To Help Refine Climate Change Forecasting; 'Oceanography Is Risky; You Lose Things' by Underwatertimes.com News Service - August 5, 2011 17:43 EST LOS ANGELES, California -- A USC researcher has opened a new window to understanding how the ocean impacts climate change. Lisa Collins, environmental studies lecturer with the USC Dornsife College, spent four years collecting samples from floating sediment traps in the San Pedro Basin off the Los Angeles coast, giving scientists a peek at how much carbon is locked up in the ocean and where it comes from. Collins' research suggests that the majority of particulate organic carbon (POC) falling to the basin floor is marine-derived, not the result of runoff from rainfall. This means that the ocean off the coast of Southern California is acting as a carbon "sink" - taking carbon out of the atmosphere via phytoplankton and locking it up in sediment. Though estimates regarding the effect of carbon in the ocean already exist, her hard data can help climatologists create more accurate predictions of how carbon will impact global warming. What is unique about Collins' study is that it is not just a snapshot of POC falling, but rather a finely detailed record of four years of POC production, showing how much fell and when. "It's all tied to climate change," said Collins, who started the research as a graduate student working for USC Earth Sciences Professor Will Berelson. "This lets us see patterns. "Our data can help climate modelers better predict the interactions between the oceans and atmosphere with respect to carbon which can help them better predict how much carbon dioxide will end up sequestered over the long term as sediments in the ocean," she said. Collins' study is among the longest of its kind in the region. A similar study was conducted in Santa Monica Basin from 1985-1991, and another is currently underway in Hawaii. Her findings appear in the August issue of Deep-Sea Research I. Between Janua
1 - 20 of 49 Next › Last »
Showing 20 items per page