Skip to main content

Home/ COSEE-West/ Group items tagged role

Rss Feed Group items tagged

Gwen Noda

Blue Carbon - The Role of Healthy Oceans in Binding Carbon | UNEP/GRID-Arendal - Public... - 2 views

  •  
    A new Rapid Response Assessment report released 14 October 2009 at the Diversitas Conference, Cape Town Conference Centre, South Africa. Compiled by experts at GRID-Arendal and UNEP in collaboration with the UN Food and Agricultural Organization (FAO) and the UNESCO International Oceanographic Commissions and other institutions, the report highlights the critical role of the oceans and ocean ecosystems in maintaining our climate and in assisting policy makers to mainstream an oceans agenda into national and international climate change initiatives
Gwen Noda

The Southern Ocean's Role in Carbon Exchange During the Last Deglaciation - 0 views

  •  
    Abstract Changes in the upwelling and degassing of carbon from the Southern Ocean form one of the leading hypotheses for the cause of glacial-interglacial changes in atmospheric carbon dioxide. We present a 25,000-year-long Southern Ocean radiocarbon record reconstructed from deep-sea corals, which shows radiocarbon-depleted waters during the glacial period and through the early deglaciation. This depletion and associated deep stratification disappeared by ~14.6 ka (thousand years ago), consistent with the transfer of carbon from the deep ocean to the surface ocean and atmosphere via a Southern Ocean ventilation event. Given this evidence for carbon exchange in the Southern Ocean, we show that existing deep-ocean radiocarbon records from the glacial period are sufficiently depleted to explain the ~190 per mil drop in atmospheric radiocarbon between ~17 and 14.5 ka.
Gwen Noda

http://www.benthic-acidification.org - 0 views

  •  
    "What are the impacts of ocean acidification on key benthic (seabed) ecosystems, communities, habitats, species and their life cycles? The average acidity (pH) of the world's oceans has been stable for the last 25 million years. However, the oceans are now absorbing so much man made CO2 from the atmosphere that measurable changes in seawater pH and carbonate chemistry can be seen. It is predicted that this could affect the basic biological functions of many marine organisms. This in turn could have implications for the survival of populations and communities, as well as the maintenance of biodiversity and ecosystem function. In the seas around the UK, the habitats that make up the seafloor, along with the animals associated with them, play a crucial role in maintaining a healthy and productive marine ecosystem. This is important considering 40% of the world's population lives within 100km of the coast and many of these people depend on coastal systems for food, economic prosperity and well-being. Given that coastal habitats also harbour incredibly high levels of biodiversity, any environmental change that affects these important ecosystems could have substantial environmental and economical impacts. During several recent international meetings scientific experts have concluded that new research is urgently needed. In particular we need long-term studies that determine: which organisms are likely to be tolerant to high CO2 and which are vulnerable; whether organisms will have time to adapt or acclimatise to this rapid environmental change; and how the interactions between individuals that determine ecosystem structure will be affected. This current lack of understanding is a major problem as ocean acidification is a rapidly evolving management issue and, with an insufficient knowledge base, policy makers and managers are struggling to formulate effective strategies to sustain and protect the marine environment in the face of ocean acidification."
Gwen Noda

Carboschools library - Material for experiments - 0 views

  •  
    How is global temperature regulated? An experimental representation - Simple experiments to help pupils understand how different parameters regulate temperature at the Earth's surface. Interaction at the Air-Water Interface, part 1 - A very simple experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils will also observe acidification of water due to CO2 introduced directly in the water. Interaction at the Air-Water Interface, part 2 - A second set of experiment to demonstrate gas exchange and equilibration at the boundary layer between air and water. Pupils observe a high atmospheric CO2 concentration will produce water acidification. Uptake of Carbon Dioxide from the Water by Plants - The following experiments will demonstrate the role of plants in mitigating the acidification caused when CO2 is dissolved in water. Carbon Dioxide Fertilization of Marine Microalgae (Dunalliela sp.) Cultures: Marine microalgae in different atmospheric CO2 concentration - An experiment designed to illustrate the impact of carbon dioxide on microalgal growth in the aquatic environment. Introduction to the principles of climate modelling - Working with real data in spreadsheets to create a climate model, students discover the global carbon budget and make their own predictions for the next century. Global carbon budget between 1958 and 2007 - Working with real global carbon budget data, students produce graphs to find the best representation of the data to make predictions about human CO2 emissions for the next century. This activity is also a nice application of percentages. Estimation of natural carbon sinks - Working with real global carbon budget data, students estimate how much of the CO2 emitted into the atmosphere as a result of human activities is absorbed naturally each year. How does temperature affect the solubility of CO2 en the water? - The following experiments will explore effects of water temperature on sol
Gwen Noda

COSEE.net - 0 views

  •  
    COSEE Network: The overall mission is "to spark and nurture collaborations among research scientists and educators to advance ocean discovery and make known the vital role of the ocean in our lives." Although each Center is funded individually, the Network of Centers has established its own set of goals: 1) Fostering the integration of ocean research into high-quality educational materials 2) Enabling ocean researchers to gain a better understanding of educational organizations and pedagogy 3) Enhancing educators' capacity to deliver high-quality educational programs in the ocean sciences 4) Promoting a deeper understanding of the ocean and its influence on each person's quality of life and our national prosperity
Gwen Noda

Galaxy Zoo Volunteers Share Pain and Glory of Research - 0 views

  •  
    Science 8 July 2011: Vol. 333 no. 6039 pp. 173-175 Galaxy Zoo Volunteers Share Pain and Glory of Research 1. Daniel Clery A project to "crowdsource" galactic classifications has paid off in ways the astronomers who started it never expected. Figure View larger version: * In this page * In a new window Space oddity. Greenish "voorwerp" spotted by a Dutch volunteer still intrigues scientists. "CREDIT: NASA, ESA, W. KEEL (UNIVERSITY OF ALABAMA), AND THE GALAXY ZOO TEAM" The automated surveys that are becoming increasingly common in astronomy are producing an embarrassment of riches for researchers. Projects such as the Sloan Digital Sky Survey (SDSS) are generating so much data that, in some cases, astronomers don't know what to do with them all. SDSS has compiled a list of more than 1 million galaxies. To glean information about galaxy evolution, however, astronomers need to know what type of galaxy each one is: spiral, barred spiral, elliptical, or something else. At present, the only reliable way to classify galaxies is to look at each one. But the SDSS list is so long that all the world's astronomers working together couldn't muster enough eyeballs for the task. Enter the "wisdom of crowds." An online effort called Galaxy Zoo, launched in 2007, set a standard for citizen-scientist participation projects. Zealous volunteers astonished the project's organizers by classifying the entire catalog years ahead of schedule. The results have brought real statistical rigor to a field used to samples too small to support firm conclusions. But that's not all. Buoyed by the curiosity and dedication of the volunteers, the Galaxy Zoo team went on to ask more-complicated classification questions that led to studies they hadn't thought possible. And in an online discussion forum on the Galaxy Zoo Web site, volunteers have pointed to anomalies that on closer inspection have turned out to be genuinely new astronomical objects. "I'm incredibly impres
Gwen Noda

C-MORE | BiG RAPA: Biogeochemical Gradients: Role in Arranging Planktonic Ass... - 0 views

  •  
    C-MORE
1 - 10 of 10
Showing 20 items per page