Skip to main content

Home/ About The Indian Ocean/ Group items tagged origine

Rss Feed Group items tagged

Jérôme OLLIER

Sublethal Injuries and Physical Abnormalities in Maldives Manta Rays, Mobula alfredi an... - 0 views

  •  
    Manta ray populations worldwide are vulnerable to sublethal injuries resulting from human activities, e.g., entanglement in fishing line and boat strikes, which have the potential to impact an individual's health, fitness, and behaviour. Sublethal injuries and physical abnormalities also occur naturally from predation events, deformity, parasites, and disease. To determine the type and frequency of anthropogenic and natural originated injury events affecting Mobula alfredi and M. birostris in the Maldives, we examined data from the Manta Trust's Maldivian Manta Ray Project (MMRP) database, which contains 73,638 photo-identification (photo-ID) sightings of the two manta ray species from 1987 to 2019. The likely origin of each injury or physical abnormality was determined based on visual assessment of the photo-ID images. Multiple injuries to an individual originating from the same event were grouped for analysis. Generalised linear mixed models (GLMM) were used to investigate the relationship between the occurrence of injury events and the explanatory variables sex and maturity status for both species, with the additional variable site function (cleaning, feeding, cruising) investigated for M. alfredi. Spatial and temporal variations in M. alfredi injury events, and their origin and type, were investigated by calculating the percentage of injury events per sighted individual at each Maldivian atoll, and per re-sighted individual in each year from 2005 to 2019. For both species, injury events were predominantly of natural origin, with predatory bites being the most frequent type. The most common anthropogenic injury type was entanglement in fishing line. Injuries to M. alfredi were significantly more likely to be observed on juveniles than adults, males than females, and at cleaning stations as opposed to feeding or cruising sites. Neither sex nor maturity status were significant explanatory variables for the occurrence of injuries to M. birostris. Highest percentages
Jérôme OLLIER

Biogeographic role of the Indonesian Seaway implicated by colonization history of purpl... - 0 views

  •  
    As a bio]diversity hotspot, the East Indies (Coral) Triangle possesses the highest biodiversity on the earth. However, evolutionary hypotheses around this area remain controversial; e.g., center of origin, center of accumulation, and center of overlap have been supported by different species. This study aims to answer the evolutionary influence of the Indonesian Seaway on the biodiversity of the Coral Triangle by recovering the evolutionary origins of a wide-ranging ommastrephid squid (Sthenoteuthis oualaniensis) based on integrated molecular and oceanographic clues from the Indo-Pacific. Three new clades were revealed; viz., clade I from the South China Sea, clade II from the northern East Indian Ocean, and clade III from the southern East Indian Ocean. These two Indian Ocean clades formed a monophyly closely related to clade IV from the Central-Southeast Pacific. Clade VI from the central Equatorial Pacific and clade V from the northern Eastern Pacific sit in basal positions of phylogenetic trees. Ancestral Sthenoteuthis was inferred to have originated from the Atlantic Ocean and sequentially dispersed to the northern East Pacific, central Equatorial Pacific, and West Pacific through the open Panama Seaway and being transported by westward North Equatorial Current. The East Indian Ocean was likely colonized by an ancestral population of clade IV from the Southeast Pacific. Westward South Equatorial Circulation could have promoted transoceanic migration of S. oualaniensis through the wide paleo-Indonesian Seaway. Sea level regression since the Miocene and the closure of the Indonesian Seaway at 4-3 Ma were responsible for the population genetic differentiation of S. oualaniensis in the Indo-Pacific. Therefore, the Indonesian Gateway played an important role in influencing marine organisms' migration and population differentiation through controlling and reorganizing circulations in the Indo-Pacific.
Jérôme OLLIER

Silky sharks find hope in Atlantic, remain targets in Indo-Pacific - @FIU - 0 views

  •  
    - Diego CARDEÑOSA uses DNA to track and monitor the shark fin trade. 99.8 percent of silky shark fins that were sampled originated from the Indo-Pacific Ocean. - This study emphasizes the need for increased monitoring in this region. - The long-term goal of CARDEÑOSA research is to provide information about where shark fins originate in order to better direct more concentrated shark conservation efforts and fisheries management.
Jérôme OLLIER

Jingle all the way - Volvo Ocean Race - 0 views

  •  
    The spirit of Christmas has caught up with the Volvo Ocean Race fleet, prompting the merry sailors to break into an original rendition of the classic carol Jingle Bells.
Jérôme OLLIER

Orbital snaps reveal Roebuck Bay's tidal movements - @SNWA - 0 views

  •  
    A PHOTO of Roebuck Bay just south of Broome, snapped by a curious astronaut on the International Space Station, has called into question the origin of some of the region's highly-unusual parallel tidal creeks.
Jérôme OLLIER

Declining Vigilance Threatens to Increase Martime Piracy - @Piracy_OBP - 0 views

  •  
    Despite reduced activity in the Western Indian Ocean Region in recent years, pirate networks responsible for the original Somali piracy crisis have sustained themselves through small-scale attacks and involvement in an array of maritime crimes. The spate of attacks over the last few months off the Horn of Africa, apparently triggered by perceived vulnerability in vessels transiting the area, may point to an elevated risk for a return of piracy. This is a key issue raised in the State of Maritime Piracy 2016, published today by Oceans Beyond Piracy (OBP). This annual reportanalyzes the human and economic impacts of maritime piracy and robbery at sea off the Horn of Africa, in the Gulf of Guinea, Asia, and for the first time, Latin America.
Jérôme OLLIER

Coastal Landform Constrains Dispersal in Mangroves - @FrontMarineSci - 0 views

  •  
    Mangrove forests are dynamic ecosystems found along low-lying coastal plains along tropical, subtropical, and some warm-temperate coasts, predominantly on tidal flats fringing deltas, estuaries, bays, and oceanic atolls. These landforms present varied hydrodynamic and geomorphological settings for mangroves to persist and could influence the extent of within-site propagule transport and subsequent local regeneration. In this study, we examined how different landform characteristics may influence local genetic diversity, kinship, and neighborhood structure of mangrove populations. To do so, we considered independent populations of Avicennia marina, one of the most abundant and widespread mangrove species, located in estuarine and coastal bay environments spread across the Western Indian Ocean region. A transect approach was considered to estimate kinship-based fine-scale spatial genetic structure using 15 polymorphic microsatellite markers in 475 adult A. marina trees from 14 populations. Elevated kinship values and significant fine-scale structure up to 30, 60, or 90 m distances were detected in sheltered systems void of river discharge, suggesting a setting suitable for very local propagule retention and establishment within a neighborhood. Slopes of a linear regression over restricted distance within 150 m were significantly declining in each sheltered transect. Contrastingly, such a spatial structure has not been detected for A. marina transects bordering rivers in the estuarine systems considered, or alongside partially sheltered creeks, suggesting that recruitment here is governed by unrelated carried-away mixed-origin propagules. South African populations showed strong inbreeding levels. In general, we have shown that A. marina populations can locally experience different modes of propagule movement, explained from their position in different coastal landforms. Thus, the resilience of mangroves through natural regeneration is achieved by different responses in
Jérôme OLLIER

Via @MBSociety - Coral-macroalgal interactions: Herbivory and substrate type influence ... - 0 views

  •  
    Introduced macroalgae becoming invasive may alter ecological functions and habitats in recipient ecosystems. In the Western Indian Ocean (WIO), non-native strains of the native macroalgae Eucheuma denticulatum were introduced for farming practices and consequently spread into the surrounding seascape. We investigated potential effects of non-native and native strains of this macroalgae on a branching coral. We conducted a four-factor field experiment where we examined growth and holdfast development of introduced and native E. denticulatum on live and dead branches of Acropora sp. in the presence and absence of herbivores in Unguja Island, Zanzibar. Moreover, we estimated coral and macroalgae condition by visual examinations, gene expression analyses, and photosynthetic measurements. Macroalgae did not attach to any live coral and coral condition was not impacted by the presence of E. denticulatum, regardless of geographical origin. Instead, necrotic tissue on the macroalgae in areas of direct contact with corals indicated damage inflicted by the coral. The biomass of E. denticulatum did not differ between the replicates attached to live or dead corals in the experiment, yet biomass was strongly influenced by herbivory and replicates without protection from herbivores had a significantly lower biomass. In the absence of herbivory, introduced E. denticulatum had significantly higher growth rates than native algae based on wet weight measurements. These results contribute to an increased understanding of environmental effects by the farming of a non-native strain of algae on corals and stresses the importance to maintain viable populations of macroalgal feeding fishes in such areas.
Jérôme OLLIER

When Imagery and Physical Sampling Work Together: Toward an Integrative Methodology of ... - 0 views

  •  
    Imagery has become a key tool for assessing deep-sea megafaunal biodiversity, historically based on physical sampling using fishing gears. Image datasets provide quantitative and repeatable estimates, small-scale spatial patterns and habitat descriptions. However, taxon identification from images is challenging and often relies on morphotypes without considering a taxonomic framework. Taxon identification is particularly challenging in regions where the fauna is poorly known and/or highly diverse. Furthermore, the efficiency of imagery and physical sampling may vary among habitat types. Here, we compared biodiversity metrics (alpha and gamma diversity, composition) based on physical sampling (dredging and trawling) and towed-camera still images (1) along the upper continental slope of Papua New Guinea (sedimented slope with wood-falls, a canyon and cold seeps), and (2) on the outer slopes of the volcanic islands of Mayotte, dominated by hard bottoms. The comparison was done on selected taxa (Pisces, Crustacea, Echinoidea, and Asteroidea), which are good candidates for identification from images. Taxonomic identification ranks obtained for the images varied among these taxa (e.g., family/order for fishes, genus for echinoderms). At these ranks, imagery provided a higher taxonomic richness for hard-bottom and complex habitats, partially explained by the poor performance of trawling on these rough substrates. For the same reason, the gamma diversity of Pisces and Crustacea was also higher from images, but no difference was observed for echinoderms. On soft bottoms, physical sampling provided higher alpha and gamma diversity for fishes and crustaceans, but these differences tended to decrease for crustaceans identified to the species/morphospecies level from images. Physical sampling and imagery were selective against some taxa (e.g., according to size or behavior), therefore providing different facets of biodiversity. In addition, specimens collected at a larger scale
Jérôme OLLIER

The sources and transport pathways of sediment in the northern Ninety-east Ridge of the... - 0 views

  •  
    The Ninety-east Ridge (NER) is located in the southern Bay of Bengal in the northeast Indian Ocean and is composed of pelagic and hemipelagic sediments. In addition to contributions from marine biomass, the ridge also contains terrestrially sourced sedimentary material. However, considerable disagreement remains regarding the origin of these terrestrial materials and transport pathways. This paper discusses the collection of seafloor surface sediments and three sediment cores recovered from the northern region of the NER, as well as the analysis of clay minerals, Sr-Nd isotopes, and sediment grain size. The ages of the three core sediments are constrained by AMS 14C dating to better establish the source and transport pathways of the terrestrial materials within NER sediments over the past 35000 years. The research results show that the Qinghai-Tibet Plateau is the predominate source of terrigenous sedimentary material in the NER. In the plateau, the crustal materials were weathered and stripped and then transported to the Andaman Sea via the Irrawaddy River. From there, the material was transported westward by monsoon-driven circulation to the northernmost part of the NER before being transported to the south for final deposition. This transport mode has changed little over the past 35000 years. However, during the rapidly changing climate of the Younger Dryas (12.9~11.5 ka BP), there were some variations in the input amount, grain size, and Sr-Nd isotope value of the source material. The above conclusions are significant for re-evaluating the source of terrigenous sediments, the temporal and spatial changes in transport modes, and the sensitivity of the NER to climatic shifts.
Jérôme OLLIER

Estimating thermohaline structures in the tropical Indian Ocean from surface parameters... - 0 views

  •  
    Accurately estimating the ocean's subsurface thermohaline structure is essential for advancing our understanding of regional and global ocean dynamics. In this study, we propose a novel neural network model based on Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) to simultaneously estimate the ocean subsurface thermal structure (OSTS) and ocean subsurface salinity structure (OSSS) in the tropical Indian Ocean using satellite observations. The input variables include sea surface temperature (SST), sea surface salinity (SSS), sea surface height anomaly (SSHA), eastward component of sea surface wind (ESSW), northward component of sea surface wind (NSSW), longitude (LON), and latitude (LAT). We train and validate the model using Argo data, and compare its accuracy with that of the original Convolutional Neural Network (CNN) model using root mean square error (RMSE), normalized root mean square error (NRMSE), and determination coefficient (R²). Our results show that the CBAM-CNN model outperforms the CNN model, exhibiting superior performance in estimating thermohaline structures in the tropical Indian Ocean. Furthermore, we evaluate the model's accuracy by comparing its estimated OSTS and OSSS at different depths with Argo-derived data, demonstrating that the model effectively captures most observed features using sea surface data. Additionally, the CBAM-CNN model demonstrates good seasonal applicability for OSTS and OSSS estimation. Our study highlights the benefits of using CBAM-CNN for estimating thermohaline structure and offers an efficient and effective method for estimating thermohaline structure in the tropical Indian Ocean.
Jérôme OLLIER

Spatiotemporal variations of the oxycline and its response to subduction events in the ... - 0 views

  •  
    The Arabian Sea is a significant hypoxic region in world's oceans, characterized by the most extensive oxygen minimum zones (OMZs). Both physical and biological processes can alter the vertical and horizontal distribution of dissolved oxygen within the upper ocean and affect the spatial and temporal distribution of hypoxia within the OMZ. To identify the key physical and biological factors influencing the boundaries of oxycline, we analyzed an extensive dataset collected from the biogeochemical-Argo (BGC-Argo) floats during the period of 2010-2022. In particular, we investigated the impact of physical subduction events on the oxycline. Our results shows that the upper boundary of the oxycline deepened in summer and winter, and seemed to be controlled by the mixed layer depth. In contrast, it was shallower during spring and autumn, mainly regulated by the deep chlorophyll maximum. The lower boundary of the oxycline in the western Arabian Sea was predominantly controlled by regional upwelling and downwelling, as well as Rossby waves in the eastern Arabian Sea. Subduction patches originated from the Arabian Sea High Salinity Water (ASHSW) were observed from the BGC-Argo data, which were found to deepen the lower boundary of the oxycline, and increase the oxygen inventory within the oxycline by 8.3%, leading to a partial decrease in hypoxia levels.
Jérôme OLLIER

Coral Reef Health Status versus Muricid Bioindicator in the Lakshadweep Archipelago - A... - 0 views

  •  
    Island ecosystems possess pristine environmental characteristics; human influence poses a serious threat to the fragile and susceptible biological processes on the islands (Sahu et al., 2013; Jha et al., 2015). Isolated oceanic islands support a highly sensitive and fragile coral reef ecosystem that offers unique possibilities to study the ecological changes and consequences that come with human settlement (Jha et al., 2011; Connor et al., 2012; Jha et al., 2013). Coral reefs are vital and core economic assets for any country that lies in the tropical and sub-tropical marine environment. Globally, the estimated economic support from this habitat has been calculated to be $375 billion per year (Cesar and Beukering, 2004; Brander et al., 2007). The important ecological services provided by these coral reef habitats have been identified as fish production, control of soil erosion on land, carbon sequestration, breeding grounds, etc. The coral reefs of Lakshadweep Islands are predominantly occupied by Scleractinian corals at various levels of the benthic substrate such as reef flat lagoon, reef crest, and reef slope. They are under great threat due to natural disturbances (Kumaraguru et al., 2005; Wilson et al., 2005) as well as anthropogenic disturbances (Wilson, 2010). The assessment of the biological indicators of benthic reef habitat is a key factor that helps in understanding the health status of any coral reef ecosystem (Al-Sofyani et al., 2014). The Crown-of-thorns Starfish (Acanthaster planciLinnaeus, 1758) is a major coral predator reported from various coral reef ecosystems. Their devastating population outbreaks have posed a great threat to coral reefs of the Indo-Pacific coastal region in the last five decades (Birkeland and Lukas, 1990; Fabricius et al., 2010). Besides the Crown-of-thorns Starfish, zooxanthellae-consuming gastropods are also reported as indicators for assessing the health status of corals in the Red Sea reef ecosystem (Mohamed et al., 2012;
Jérôme OLLIER

Social-ecological vulnerability to climate change and risk governance in coastal fishin... - 0 views

  •  
    In Bangladesh, fishing communities are one of the most climate-vulnerable groups, though they play an important role in economic development. The main objective of this study was to identify vulnerability by exploring exposure (i.e., lack of regulating services or household capitals), susceptibility (i.e., lack of access to provisioning services), and lack of resilience (i.e., lack of alternative livelihoods and capacity) and to explore adaptation options, and challenges to understand risk governance. The study considered 45 published research articles for analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Keywords were used in combinations (e.g., fishing communities and Bangladesh) to identify and screen published articles. Articles published in English focusing on vulnerability and/or risk governance, published between 2011 and 2022, featuring original empirical data or a comprehensive systematic review, and published in peer-reviewed journals were included. Articles were excluded if vulnerability and risk governance were evaluated but did not fit or match the definition used in this study. The study found frequent disasters and ocean warming caused different stresses, such as reduced fish catch and income, and resulted in an increased risk of fisheries conflict. Moreover, fishing communities have limited access to properties, modern fishing equipment, financial institutions, and fisher-centered organizations. Adaptation strategies include ecosystem-based (e.g., plantation, payment for ecosystem services) and non-ecosystem-based (e.g., temporary migration, getting help from neighbors) approaches. To boost fish production, the Government of Bangladesh instituted fishing restrictions and social safety net programs (e.g., distributing rice during the fishing restrictions); both initiatives were helpful. However, the conservation policies are not being implemented properly, and there is no particular social welfa
Jérôme OLLIER

Scientists discover hidden crab diversity among coral reefs - @FloridaMuseum - 0 views

  •  
    The Indo-West Pacific is the largest, most biodiverse marine ecosystem on Earth, and many of the species it supports have comparably wide ranges. Writing in "The Origin of Species," Charles DARWIN noted that "… many fish range from the Pacific into the Indian Ocean, and many shells are common to the eastern islands of the Pacific and the eastern shores of Africa, on almost exactly opposite meridians of latitude."
Jérôme OLLIER

Assessing biogeochemical controls on porewater dissolved inorganic carbon cycling in th... - 0 views

  •  
    Quantitatively assessing the porewater dissolved inorganic carbon (DIC) cycling in methane-enriched marine sediments is crucial to understanding the contributions of different carbon sources to the global marine carbon pool. In this study, Makran accretionary wedge was divided into Zone 1 (high methane flux area) and Zone 2 (background area). Porewater geochemical compositions (Cl-, SO42-, NH4+, Mg2+, Ca2+, Ba2+, DIC and δ13C-DIC) and a reaction-transport model were used to determine the DIC source and calculate the DIC flux through carbonate precipitation and releasing into overlying seawater in sediments. Zone 1 is characterized by the shallower depth of sulfate-methane transition (SMT), where most of porewater sulfate was consumed by anaerobic oxidation of methane (AOM). In contrast, a relatively low flux of methane diffusion in Zone 2 results in a deeper SMT depth and shallow sulfate is predominantly consumed by organoclastic sulfate reduction (OSR). Based on the porewater geochemical profiles and δ13C mass balance, the proportions of porewater DIC originating from methane were calculated as 51% in Zone 1 and nearly 0% in Zone 2. An increase of porewater DIC concentration leads to authigenic carbonate precipitation. Solid total inorganic carbon (TIC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM) analysis display that carbonate content increases with depth and aragonite appears at or below the depths of SMT. Meanwhile, the flux of DIC released from sediments calculated by the reaction-transport model is 51.3 ~ 90.4 mmol/m2·yr in Zone 1, which is significantly higher than that in Zone 2 (22.4 mmol/m2·yr). This study demonstrates that AOM serves as the dominant biogeochemical process regulating the porewater DIC cycle, which has an important impact on the authigenic carbonate burial and the seawater carbonate chemistry.
Jérôme OLLIER

Contribution of aged organic carbon to suspended particulate organic carbon in the west... - 0 views

  •  
    We investigated dual carbon isotopes within the vertical water column at sites 67-1 and 67-2 of the western equatorial Indian Ocean to determine the source and age of particulate organic carbon (POC) and thus evaluated the contributions of modern and fossil (aged) POC. The concentration of POC ranged from 7 to 47.3 μgC L−1, δ13CPOC values ranged from -31.8 to -24.4‰, and Δ14CPOC values ranged from -548 to -111‰. Higher values of δ13CPOC and Δ14CPOC near the surface indicated an influence of autochthonous POC, whereas decreasing trends toward the bottom suggested a contribution of aged OC sources to the total POC pool. The contribution of fossil POC was lower near the surface, accounting for only 12% and 6% of the total POC at sites 67-1 and 67-2, respectively; however, in the deeper layers below 1,000 m, the contribution of fossil POC increased to 52% and 44% of the total POC at the two sites. Mechanisms for the increased contributions of fossil OC within deeper POC include the inflow of aged OC from sediments resuspended near slopes, the adsorption of old dissolved organic carbon in deep water masses, and the impact of aged OC that may originate from hydrothermal sources. This study highlights the importance of aged OC in the carbon cycle of the equatorial Indian Ocean.
Paul McGrady

Sophisticated Style And Elegance Combined - 1 views

We all love our new house because it is located in a clean and fresh area far from the bustling city life. Here, we can see the beauty of nature especially because we have this bi folding doors e...

started by Paul McGrady on 31 Oct 12 no follow-up yet
Jérôme OLLIER

Origins of 'The Hoff' crab revealed - University of Oxford - 0 views

  •  
    The history of a new type of crab, nicknamed 'The Hoff' because of its hairy chest, has been revealed for the first time.
Jérôme OLLIER

Sharks more vulnerable than originally thought - @UniofNewcastle - 0 views

  •  
    Total number of sharks and rays caught annually by small-scale fisheries in the South West Indian Ocean is estimated to be 2.5 million individuals - 73% more than officially reported.
1 - 20 of 22 Next ›
Showing 20 items per page