Skip to main content

Home/ Dr. Goodyear/ Group items tagged quinone

Rss Feed Group items tagged

Nathan Goodyear

Potential Mechanisms of Estrogen Quinone Carcinogenesis - 0 views

  • 4-hydroxyestrone/estradiol was found to be carcinogenic in the male Syrian golden hamster kidney tumor model, whereas, 2-hydroxylated metabolites were without activity
  • 4-hydroxyestradiol induced uterine tumors in 66% of CD-1 mice; whereas, mice treated with 2-hydroxyestradiol or 17β-estradiol had much lower uterine tumor incidence
  • DNA adducts of catechol estrogen quinones have been detected in the mammary glands of ACI rats treated with 4-hydroxyestradiol or it’s quinone
  •  
    great read on the proposed mechanisms of how estrogen metabolites produce quinone intermediates that are carcinogenic.
Nathan Goodyear

NAD(P)H : quinone Oxidoreductase 1 Deficiency and Increased Susceptibility to 7,12-Dime... - 0 views

  •  
    NADPH: quinone oxidoreductase 1 protects against quinone induced cytotoxicity
Nathan Goodyear

Genotoxic metabolites of estradio... [J Steroid Biochem Mol Biol. 2003] - PubMed - NCBI - 0 views

  •  
    study finds estrogen metabolites are involved in carcinogenesis through the production of toxic metabolites 3,4 quinones.  The presence of Estrogen receptors were associated with increased tumor growth. ER was in fact ER alpha.  What is interesting is that ER beta is not expressed these ERKO animals.  This again points to ER beta's anti proliferative action.
Nathan Goodyear

Estrogen Metabolism and Risk of Breast Cancer in Postmenopausal Women - 0 views

  • The ratio of the 2-hydroxylation pathway to parent estrogens was associated with a statistically significantly decreased risk of breast cancer
  • In this study, this ratio was more strongly associated with the risk of breast cancer compared with the ratio of 2-hydroxylation pathway to 16-hydroxylation pathway or unconjugated estradiol alone
  • 2-hydroxylation pathway catechols have relatively low affinities for estrogen receptors (4) and are rapidly cleared from circulation
  • ...6 more annotations...
  • In this study, the ratio of the 2-hydroxylation pathway to the 16-hydroxylation pathway was associated with a non-statistically significantly decreased risk of breast cancer
  • In this study, the ratio of catechols to methylated catechols in the 4-hydroxylation pathway was associated with statistically significantly increased risk of breast cancer.
  • This result is consistent with the hypothesis that mutagenic quinones derived from 4-hydroxylation pathway catechols contribute to pathogenesis of postmenopausal breast cancer.
  • Catechols in both the 2- and 4-hydroxylation pathways can be oxidized to form quinones; these reactive electrophiles can then react with DNA to form a variety of adducts
  • Methylation of the catechols prevents their conversion to reactive quinones
  • the most common DNA adducts derived from 4-hydroxylation pathway catechols are depurinating and highly mutagenic (7,40), most of those derived from 2-hydroxylation pathway catechols are stable and can be repaired with little error
  •  
    Lower 2-OH estrone metabolism associated with lower risk of breast cancer, but 4-OH estrone associated with increased risk of breast cancer.
Nathan Goodyear

Circulating 2-hydroxy and 16-α hydroxy estrone levels and risk of breast canc... - 1 views

  • 2-OH estrogens bind to the estrogen receptor (ER) with affinity equivalent to or greater than estradiol
  • previous prospective studies have not observed any significant associations with either 2-OH or 16α-OH estrone or the ratio of the two metabolites and breast cancer risk overall.
    • Nathan Goodyear
       
      whether that risk is increased or decreased
  • it has been hypothesized that metabolism favoring the 2-OH over the 16α-OH pathway may be inversely associated with breast cancer risk (28).
  • ...24 more annotations...
  • they may act as only weak mitogens (14, 15), or as inhibitors of proliferation
  • No significant associations have been observed between 2-OH estrone and breast cancer risk
  • While 16α-OH estrone binds to the ER with lower affinity than estradiol, it binds covalently (18-20) and once bound, fails to down-regulate the receptor (21). Thus, 16α-OH estrone stimulates cell proliferation in a manner comparable to estradiol in ER+ breast cancer cell lines
  • In this large prospective study of 2-OH and 16α-OH estrone metabolites and breast cancer risk, we did not observe any significant associations overall with either individual metabolite or with the ratio of the two metabolites
  • we observed positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with lower BMI and women with ER-/PR-tumors,
  • To date, several epidemiologic studies have examined the association between the 2-OH and 16α-OH estrogen metabolites and breast cancer risk with inconclusive results.
  • circulating estrogen levels have been associated more strongly with ER+/PR+ tumors than with ER-/PR- tumors
  • our results do not support the hypothesis that metabolism favoring the 2-OH estrone pathway is more beneficial to breast cancer risk than that favoring the 16α-OH estrone pathway
  • we observed significant positive associations of both 2-OH estrone and the 2:16α-OH estrone ratio with ER-/PR-tumors
  • Three (30, 32, 33) of four (30-33) studies observed RRs above 1 for the association between 16α-OH estrone and breast cancer risk (range of RRs=1.23-2.47); none of the point estimates was statistically significant though one trend was suggestive
  • based on animal studies, 2-OH estrone and the 2:16α-OH estrone ratio have been hypothesized to be inversely associated with breast cancer risk
  • No significant associations have been observed between 2-OH estrone, 16α-OH estrone, or the 2:16α-OH estrone ratio and breast cancer risk and the direction of the estimates is not consistent across studies.
    • Nathan Goodyear
       
      better worded is no consistent, significant associations.   There are some studies that point to the 16 catecholestrogen and increased cancer risk; limited studies show negative effects of 2 catecholestrogens on cancer risk and prospective studies available pretty much dispel the idea that the 2:16 ratio has an risk predictability.
  • we observed a suggestive inverse association with 16α-OH estrone and a significant positive association with the 2:16α-OH estrone ratio among lean women, suggesting possible associations in a low estrogen environment.
  • 16α-OH estrone increases unscheduled DNA synthesis in mouse mammary cells (27) and hence also may be genotoxic
  • Although 2-OH estrogens are capable of redox cycling, the semiquinones and quinones (i.e., the oxidized forms) form stable DNA adducts that are reversible without DNA destruction
  • In our population of PMH nonusers, we observed no associations with ER+/PR+ tumors, but significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio among women with ER-/PR- tumors
    • Nathan Goodyear
       
      one of the few studies to find this association between 2 catecholestrogens and the 2:16 ratio and ER-/PR-tumors
  • Animal and in vitro studies have shown that hydroxy estrogens can induce DNA damage either directly, through the formation of quinones and DNA adducts, or indirectly, through redox cycling and the generation of reactive oxygen species
    • Nathan Goodyear
       
      genotoxic via directe DNA adducts and indirectly via ROS; this is in addition to the proliferative effect
  • we observed a significant positive association between the 2:16α-OH estrone ratio and breast cancer risk among lean women
  • No significant associations have been observed with the 2:16α-OH estrone ratio
  • In the Danish study, no associations were observed with either ER+ or ER- tumors among PMH nonusers
  • significant positive associations with 2-OH estrone and the 2:16α-OH estrone ratio were observed among PMH users with ER+, but not ER-, tumors
  • it is possible that the genotoxicity of 2-OH estrone plays a role in hormone receptor negative tumors
  • 4-OH estrogens have a greater estrogenic potential than 2-OH estrogens, given the lower dissociation rate from estrogen receptors compared with estradiol (61), and are potentially more genotoxic since the quinones form unstable adducts, leading to depurination and mutation in vitro and in vivo
  • the balance between the catechol (i.e., 2-OH and 4-OH) and methoxy (i.e., 2-Me and 4-Me) estrogens may impact risk
  •  
    The risks of estrogen metabolism are not clear cut.  Likely never will be due to the complexity of individual metabolism.  This study found no correlation between 2OH-Estrone and 2OH:16alpha-Estrone and breast cancer risk in ER+/PR+ breast cancer.  Translated: no benefit in breast cancer risk in 2OH-Estrone metabolism or increased 2OH:16alpha estrone metabolism.  There was a positive association between 2OH-Estrone and 2:16alpha-Estrone in women with ER-/PR- tumors and low BMI.
  •  
    pakistani sexy girls escort in dubai // russian sexy girsl escort in dubai // sexy girls in dubai // sexy girls escort in dubai //
Nathan Goodyear

Estrogen Metabolism and Risk of Breast Cancer in Postmenopausal Women - 0 views

  •  
    Get article on estrogen metabolism/metabolites and their effects on the risk of breast cancer in post menopause women.  This article brings to light new information: 2:16alpha estrone ratio is not a great predicted of risk, 2-OH and 4-OH metabolites can form quinone intermediates...
Nathan Goodyear

Catechol estrogen metabolites and conjugates in different regions of the prostate of No... - 1 views

  •  
    loss of ability to handle estrogen quinone metabolites is due to decreased detoxification capacity i.e.COMT, GSH...is associated with prostate carcinogenesis in rats.
Nathan Goodyear

Urinary Estrogens and Estrogen Metabolites and Subsequent Risk of Breast Cancer among P... - 0 views

  • both 2- and 4-catechol estrogen metabolites bind to the ER with affinities comparable with estradiol, 4-catechol estrogen metabolites have lower dissociation rates than estradiol and an enhanced ability to upregulate ER-dependent processes
  • 2-catechol estrogen metabolites act as either weak mitogens (39) or weak inhibitors of cell proliferation
  • While 16α-hydroxyestrone binds to the ER with lower affinity than estradiol, it binds covalently (41) and leads to a constitutively activated ER
  • ...15 more annotations...
  • 4-hydroxyestradiol and 16α-hydroxyestrone increasing proliferation and decreasing apoptosis in a manner similar to estradiol; however, these effects were achieved only at concentrations 10-fold higher than estradiol (39). In contrast, 2-hydroxyestradiol did not have substantial proliferative or antiapoptotic effects
  • In our study, the associations with both 2-hydroxyestrone and 16α-hydroxyestrone were nonsignificantly inverse and we did not observe a consistent trend or significant associations between the 2-hydroxyestrone:16α-hydroxyestrone ratio and breast cancer risk
  • Ratios of the 3 hydroxylation pathways were not significantly associated with risk although the 2:16-pathway and 4:16-pathway ratios were suggestively inversely associated
  • a significant inverse association with the ratio of parent estrogens to estrogen metabolites
  • several potentially estrogenic and genotoxic mechanisms
  • Estrogen metabolites also can be genotoxic
  • Catechol estrogens can be oxidized into quinones and induce DNA damage directly through the formation of DNA adducts, or indirectly via redox cycling and generation of reactive oxygen species
  • the oxidized forms of the catechol estrogens differ in their ability to damage DNA through adducts, with oxidized 2-catechols forming stable and reversible DNA adducts and oxidized 4-catechols forming unstable adducts, which lead to depurination and mutations
  • 2- and 4-catechols have been shown to produce reactive oxygen species and induce oxidative DNA damage
  • act independently from the ER
  • 16α-Hydroxyestrone also may be genotoxic
  • While the catechol estrogens have estrogenic and genotoxic potential, the methylated catechol estrogens, which are catechol estrogens with one hydroxyl group methylated, have been hypothesized to lower the risk of breast cancer
  • The suggested mechanisms are indirect, by decreasing circulating levels of catechol estrogens and thereby the opportunity for catechols to exert genotoxic or proliferative effects, or direct, by inhibiting tumor growth and inducing apoptosis
  • the balance between phase I (oxidation) and phase II (methylation) metabolism of estrogen may be important in hormonally related cancer development.
  • Despite the estrogenic and genotoxic potential of many of the estrogen metabolites, we only observed a significantly increased breast cancer risk with one estrogen metabolite, 17-epiestriol, which has particularly strong estrogenic activity and binds to both ERα and ERβ with an affinity comparable with estradiol
  •  
    review of estrogen metabolites and breast cancer risk in premenopausal women.
Nathan Goodyear

Urinary estrogens and estrogen metabolites and subsequent risk of breast cancer among p... - 0 views

  • While the catechol estrogens have estrogenic and genotoxic potential, the methylated catechol estrogens, which are catechol estrogens with one hydroxyl group methylated, have been hypothesized to lower risk of breast cancer.
  • Despite the estrogenic and genotoxic potential of many of the EM, we only observed a significantly increased breast cancer risk with one EM, 17-epiestriol, which has particularly strong estrogenic activity and binds to both ERα and ERβ with an affinity comparable to estradiol
  • We did not observe reduced risk for higher concentrations of 2-pathway EM relative to 16-pathway EM, nor did we observe a consistent benefit of higher concentrations of methylated catechol EM compared with catechol EM.
  • ...4 more annotations...
  • EM also can be genotoxic, but the individual EM vary in their ability to induce DNA damage
  • Catechol estrogens can be oxidized into quinones and induce DNA damage directly through the formation of DNA adducts, or indirectly via redox cycling and generation of reactive oxygen species
  • the oxidized forms of the catechol estrogens differ in their ability to damage DNA through adducts, with oxidized 2-catechols forming stable and reversible DNA adducts and oxidized 4-catechols forming unstable adducts, which lead to depurination and mutations
  • 2- and 4-catechols have been shown to produce reactive oxygen species and induce oxidative DNA damage (46). These catechols also induce neoplastic transformation in ER-cells, and thus act independently from the ER
  •  
    Estrogen metabolites.
1 - 9 of 9
Showing 20 items per page