Skip to main content

Home/ Dr. Goodyear/ Group items tagged VO2max

Rss Feed Group items tagged

Nathan Goodyear

Impact of an Exercise Intervention on DNA Methylation in Skeletal Muscle From First-Deg... - 0 views

  • epigenetic modifications of single genes have been shown to affect the pathogenesis of T2D
  • An FH of T2D is an independent predictor of future risk for the disease
  • exercise for 6 months is associated with epigenetic changes, e.g., decreased DNA methylation of RUNX1 and MEF2A, two key transcription factors involved in exercise training (42–44), of THADA, previously associated with T2D (1), and of NDUFC2, which is part of the respiratory chain (45) was observed after exercise
  • ...4 more annotations...
  • exercise changed both DNA methylation and expression of a number of genes, including ADIPOR1, ADIPOR2, and BDKRB2, encoding receptors for adiponectin and bradykinin, respectively, which both regulate metabolism in muscle
  • we cannot draw a conclusion as to whether differential expression is a consequence rather than a cause of changes in methylation
  • ageing is associated with increased DNA methylation and decreased expression of genes involved in oxidative phosphorylation in human muscle
  • exercise can induce genome-wide epigenetic changes in human muscle and that the response may differ in people with different genetic predispositions to metabolic disease
  •  
    Six months of exercise induce epigenetic changes through decrease in methylation.  This study was designed to look at those with a family risk of DM.  They found a difference in the methylation status of muscle between those with a family h/o diabetes and those without.  This would have implications in therapeutic difference prior to diagnosis.  Even a increased VO2max and skeletal muscle mitochondrial density was found to be the result of decreased methylation of the NDUFC2 gene after exercise.
Nathan Goodyear

Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen up... - 0 views

  •  
    supplementation of 2.6 grams of n-3 found to increase NO and VO2max in elite cycling athletes.  This has applications for all endurance athletes.  
Nathan Goodyear

Exercise-induced right ventricular dysfunction and structural remodelling in endurance ... - 0 views

  • In a cohort of well-trained athletes, we demonstrated that intense endurance exercise causes an acute reduction in RV function that increases with race duration and correlates with increases in biomarkers of myocardial injury
  • no relationship between LV function and biomarker levels
  • focal gadolinium enhancement and increased RV remodelling were more prevalent in those athletes with a longer history of competitive sport, suggesting that repetitive ultra-endurance exercise may lead to more extensive RV change and possible myocardial fibrosis
  • ...22 more annotations...
  • he cardiac impact of both acute and cumulative exercise is greatest on the RV.
  • Greater reductions in RV function occurred in those athletes competing for a longer duration, suggesting that the heart has a finite capacity to maintain the increased work demands of exercise
  • cardiac injury is greatest in the least trained
  • Previous investigators have documented reductions in RV function in less trained subjects over the marathon distance
  • We enrolled elite and subelite athletes and found a significant association between fitness (VO2max) and the reduction in post-race RVEF
  • Even after many years of detraining, cardiac dilation may not completely regress in elite athletes
  • The focus on well-trained athletes may be of particular relevance, given that they perform exercise of highest intensity and duration most frequently, and, thus, may be at a greater risk of cumulative injury.
  • The lack of correlation between increases in troponin and changes in LV function seen in this study has been previously interpreted as evidence that post-exercise elevations in cardiac biomarkers are benign.
  • a significant correlation between changes in RVEF and post-race biomarker levels and this relationship was even stronger in the athletes who completed the race of longest duration, the ultra-triathlon
  • The correlations with RVEF, but not LVEF, provide further evidence of the differential effects of intense exercise on RV and LV function
  • BNP release during intense exercise is associated with greater relative increases in RV systolic pressures, but not LV pressures
  • BNP may provide a measure of both acute RV load and the resultant fatigue which occurs when this load is sustained
  • It has been demonstrated that ventricular load increases with exercise intensity and is greater for the RV than the LV,29 thus potentially explaining why the RV is more susceptible to fatigue after prolonged exercise.
  • This study demonstrates, for the first time, an association between endurance exercise of increasing duration and structural, functional, and biochemical markers of cardiac dysfunction in highly trained athletes
  • Functional abnormalities were confined to the RV and were largely reversible 1 week following the event
  • there remained a significant minority of athletes in whom there was evidence of myocardial fibrosis in the interventricular septum
  • RV abnormalities may be acquired through cumulative bouts of intense exercise and provides direction for prospective investigations aimed at elucidating whether extreme exercise may promote arrhythmias in some athletes.
  • the acute injury and chronic remodelling of the myocardium both disproportionately affect the RV and it remains possible that the two are linked.
  • focal DGE was confined to the interventricular septum and commonly at the site of RV attachment
  • emerging evidence that intense endurance exercise may be associated with an excess in arrhythmic disorders, the mechanisms for which remain unexplained
  • RVEF (and not LVEF) was reduced in athletes with complex ventricular arrhythmias when compared with healthy athletes and non-athletes without arrhythmias
  • it is premature to conclude that these changes may represent a proarrhythmic substrate
  •  
    Study finds endurance racing results in reduce Right ventricle ejection fraction even in elite athletes.  This post-race RVEF reduction is associated with VO2max.
1 - 3 of 3
Showing 20 items per page