Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged technologies

Rss Feed Group items tagged

Weiye Loh

TODAYonline | Commentary | Science, shaken, must take stock - 0 views

  • Japan's part-natural, part-human disaster is an extraordinary event. As well as dealing with the consequences of an earthquake and tsunami, rescuers are having to evacuate thousands of people from the danger zone around Fukushima. In addition, the country is blighted by blackouts from the shutting of 10 or more nuclear plants. It is a textbook case of how technology can increase our vulnerability through unintended side-effects.
  • Yet there had been early warnings from scientists. In 2006, Professor Katsuhiko Ishibashi resigned from a Japanese nuclear power advisory panel, saying the policy of building in earthquake zones could lead to catastrophe, and that design standards for proofing them against damage were too lax. Further back, the seminal study of accidents in complex technologies was Professor Charles Perrow's Normal Accidents, published in 1984
  • Things can go wrong with design, equipment, procedures, operators, supplies and the environment. Occasionally two or more will have problems simultaneously; in a complex technology such as a nuclear plant, the potential for this is ever-present.
  • ...9 more annotations...
  • in complex systems, "no matter how effective conventional safety devices are, there is a form of accident that is inevitable" - hence the term "normal accidents".
  • system accidents occur with many technologies: Take the example of a highway blow-out leading to a pile-up. This may have disastrous consequences for those involved but cannot be described as a disaster. The latter only happens when the technologies involved have the potential to affect many innocent bystanders. This "dread factor" is why the nuclear aspect of Japan's ordeal has come to dominate headlines, even though the tsunami has had much greater immediate impact on lives.
  • It is simply too early to say what precisely went wrong at Fukushima, and it has been surprising to see commentators speak with such speed and certainty. Most people accept that they will only ever have a rough understanding of the facts. But they instinctively ask if they can trust those in charge and wonder why governments support particular technologies so strongly.
  • Industry and governments need to be more straightforward with the public. The pretence of knowledge is deeply unscientific; a more humble approach where officials are frank about the unknowns would paradoxically engender greater trust.
  • Likewise, nuclear's opponents need to adopt a measured approach. We need a fuller democratic debate about the choices we are making. Catastrophic potential needs to be a central criterion in decisions about technology. Advice from experts is useful but the most significant questions are ethical in character.
  • If technologies can potentially have disastrous effects on large numbers of innocent bystanders, someone needs to represent their interests. We might expect this to be the role of governments, yet they have generally become advocates of nuclear power because it is a relatively low-carbon technology that reduces reliance on fossil fuels. Unfortunately, this commitment seems to have reduced their ability to be seen to act as honest brokers, something acutely felt at times like these, especially since there have been repeated scandals in Japan over the covering-up of information relating to accidents at reactors.
  • Post Fukushima, governments in Germany, Switzerland and Austria already appear to be shifting their policies. Rational voices, such as the Britain's chief scientific adviser John Beddington, are saying quite logically that we should not compare the events in Japan with the situation in Britain, which does not have the same earthquake risk. Unfortunately, such arguments are unlikely to prevail in the politics of risky technologies.
  • firms and investors involved in nuclear power have often failed to take regulatory and political risk into account; history shows that nuclear accidents can lead to tighter regulations, which in turn can increase nuclear costs. Further ahead, the proponents of hazardous technologies need to bear the full costs of their products, including insurance liabilities and the cost of independent monitoring of environmental and health effects. As it currently stands, taxpayers would pay for any future nuclear incident.
  • Critics of technology are often dubbed in policy circles as anti-science. Yet critical thinking is central to any rational decision-making process - it is less scientific to support a technology uncritically. Accidents happen with all technologies, and are regrettable but not disastrous so long as the technology does not have catastrophic potential; this raises significant questions about whether we want to adopt technologies that do have such potential.
Weiye Loh

Roger Pielke Jr.'s Blog: Faith-Based Education and a Return to Shop Class - 0 views

  • In the United States, nearly a half century of research, application of new technologies and development of new methods and policies has failed to translate into improved reading abilities for the nation’s children1.
  • the reasons why progress has been so uneven point to three simple rules for anticipating when more research and development (R&D) could help to yield rapid social progress. In a world of limited resources, the trick is distinguishing problems amenable to technological fixes from those that are not. Our rules provide guidance\ in making this distinction . . .
  • unlike vaccines, the textbooks and software used in education do not embody the essence of what needs to be done. That is, they don’t provide the basic ‘go’ of teaching and learning. That depends on the skills of teachers and on the attributes of classrooms and students. Most importantly, the effectiveness of a vaccine is largely independent of who gives or receives it, and of the setting in which it is given.
  • ...5 more annotations...
  • The three rules for a technological fix proposed by Sarewitz and Nelson are: I. The technology must largely embody the cause–effect relationship connecting problem to solution. II. The effects of the technological fix must be assessable using relatively unambiguous or uncontroversial criteria. III. Research and development is most likely to contribute decisively to solving a social problem when it focuses on improving a standardized technical core that already exists.
  • technology in the classroom fails with respect to each of the three criteria: (a) technology is not a causal factor in learning in the sense that more technology means more learning, (b) assessment of educational outcome sis itself difficult and contested, much less disentangling various causal factors, and (c) the lack of evidence that technology leads to improved educational outcomes means that there is no such standardized technological core.
  • This conundrum calls into question one of the most significant contemporary educational movements. Advocates for giving schools a major technological upgrade — which include powerful educators, Silicon Valley titans and White House appointees — say digital devices let students learn at their own pace, teach skills needed in a modern economy and hold the attention of a generation weaned on gadgets. Some backers of this idea say standardized tests, the most widely used measure of student performance, don’t capture the breadth of skills that computers can help develop. But they also concede that for now there is no better way to gauge the educational value of expensive technology investments.
  • absent clear proof, schools are being motivated by a blind faith in technology and an overemphasis on digital skills — like using PowerPoint and multimedia tools — at the expense of math, reading and writing fundamentals. They say the technology advocates have it backward when they press to upgrade first and ask questions later.
  • [D]emand for educated labour is being reconfigured by technology, in much the same way that the demand for agricultural labour was reconfigured in the 19th century and that for factory labour in the 20th. Computers can not only perform repetitive mental tasks much faster than human beings. They can also empower amateurs to do what professionals once did: why hire a flesh-and-blood accountant to complete your tax return when Turbotax (a software package) will do the job at a fraction of the cost? And the variety of jobs that computers can do is multiplying as programmers teach them to deal with tone and linguistic ambiguity. Several economists, including Paul Krugman, have begun to argue that post-industrial societies will be characterised not by a relentless rise in demand for the educated but by a great “hollowing out”, as mid-level jobs are destroyed by smart machines and high-level job growth slows. David Autor, of the Massachusetts Institute of Technology (MIT), points out that the main effect of automation in the computer era is not that it destroys blue-collar jobs but that it destroys any job that can be reduced to a routine. Alan Blinder, of Princeton University, argues that the jobs graduates have traditionally performed are if anything more “offshorable” than low-wage ones. A plumber or lorry-driver’s job cannot be outsourced to India.
  •  
    In 2008 Dick Nelson and Dan Sarewitz had a commentary in Nature (here in PDF) that eloquently summarized why it is that we should not expect technology in the classroom to reault in better educational outcomes as they suggest we should in the case of a tehcnology like vaccines
Weiye Loh

Kevin Kelly and Steven Johnson on Where Ideas Come From | Magazine - 0 views

  • Say the word “inventor” and most people think of a solitary genius toiling in a basement. But two ambitious new books on the history of innovation—by Steven Johnson and Kevin Kelly, both longtime wired contributors—argue that great discoveries typically spring not from individual minds but from the hive mind. In Where Good Ideas Come From: The Natural History of Innovation, Johnson draws on seven centuries of scientific and technological progress, from Gutenberg to GPS, to show what sorts of environments nurture ingenuity. He finds that great creative milieus, whether MIT or Los Alamos, New York City or the World Wide Web, are like coral reefs—teeming, diverse colonies of creators who interact with and influence one another.
  • Seven centuries are an eyeblink in the scope of Kelly’s book, What Technology Wants, which looks back over some 50,000 years of history and peers nearly that far into the future. His argument is similarly sweeping: Technology, Kelly believes, can be seen as a sort of autonomous life-form, with intrinsic goals toward which it gropes over the course of its long development. Those goals, he says, are much like the tendencies of biological life, which over time diversifies, specializes, and (eventually) becomes more sentient.
  • We share a fascination with the long history of simultaneous invention: cases where several people come up with the same idea at almost exactly the same time. Calculus, the electrical battery, the telephone, the steam engine, the radio—all these groundbreaking innovations were hit upon by multiple inventors working in parallel with no knowledge of one another.
  • ...25 more annotations...
  • It’s amazing that the myth of the lone genius has persisted for so long, since simultaneous invention has always been the norm, not the exception. Anthropologists have shown that the same inventions tended to crop up in prehistory at roughly similar times, in roughly the same order, among cultures on different continents that couldn’t possibly have contacted one another.
  • Also, there’s a related myth—that innovation comes primarily from the profit motive, from the competitive pressures of a market society. If you look at history, innovation doesn’t come just from giving people incentives; it comes from creating environments where their ideas can connect.
  • The musician Brian Eno invented a wonderful word to describe this phenomenon: scenius. We normally think of innovators as independent geniuses, but Eno’s point is that innovation comes from social scenes,from passionate and connected groups of people.
  • It turns out that the lone genius entrepreneur has always been a rarity—there’s far more innovation coming out of open, nonmarket networks than we tend to assume.
  • Really, we should think of ideas as connections,in our brains and among people. Ideas aren’t self-contained things; they’re more like ecologies and networks. They travel in clusters.
  • ideas are networks
  • In part, that’s because ideas that leap too far ahead are almost never implemented—they aren’t even valuable. People can absorb only one advance, one small hop, at a time. Gregor Mendel’s ideas about genetics, for example: He formulated them in 1865, but they were ignored for 35 years because they were too advanced. Nobody could incorporate them. Then, when the collective mind was ready and his idea was only one hop away, three different scientists independently rediscovered his work within roughly a year of one another.
  • Charles Babbage is another great case study. His “analytical engine,” which he started designing in the 1830s, was an incredibly detailed vision of what would become the modern computer, with a CPU, RAM, and so on. But it couldn’t possibly have been built at the time, and his ideas had to be rediscovered a hundred years later.
  • I think there are a lot of ideas today that are ahead of their time. Human cloning, autopilot cars, patent-free law—all are close technically but too many steps ahead culturally. Innovating is about more than just having the idea yourself; you also have to bring everyone else to where your idea is. And that becomes really difficult if you’re too many steps ahead.
  • The scientist Stuart Kauffman calls this the “adjacent possible.” At any given moment in evolution—of life, of natural systems, or of cultural systems—there’s a space of possibility that surrounds any current configuration of things. Change happens when you take that configuration and arrange it in a new way. But there are limits to how much you can change in a single move.
  • Which is why the great inventions are usually those that take the smallest possible step to unleash the most change. That was the difference between Tim Berners-Lee’s successful HTML code and Ted Nelson’s abortive Xanadu project. Both tried to jump into the same general space—a networked hypertext—but Tim’s approach did it with a dumb half-step, while Ted’s earlier, more elegant design required that everyone take five steps all at once.
  • Also, the steps have to be taken in the right order. You can’t invent the Internet and then the digital computer. This is true of life as well. The building blocks of DNA had to be in place before evolution could build more complex things. One of the key ideas I’ve gotten from you, by the way—when I read your book Out of Control in grad school—is this continuity between biological and technological systems.
  • technology is something that can give meaning to our lives, particularly in a secular world.
  • He had this bleak, soul-sucking vision of technology as an autonomous force for evil. You also present technology as a sort of autonomous force—as wanting something, over the long course of its evolution—but it’s a more balanced and ultimately positive vision, which I find much more appealing than the alternative.
  • As I started thinking about the history of technology, there did seem to be a sense in which, during any given period, lots of innovations were in the air, as it were. They came simultaneously. It appeared as if they wanted to happen. I should hasten to add that it’s not a conscious agency; it’s a lower form, something like the way an organism or bacterium can be said to have certain tendencies, certain trends, certain urges. But it’s an agency nevertheless.
  • technology wants increasing diversity—which is what I think also happens in biological systems, as the adjacent possible becomes larger with each innovation. As tech critics, I think we have to keep this in mind, because when you expand the diversity of a system, that leads to an increase in great things and an increase in crap.
  • the idea that the most creative environments allow for repeated failure.
  • And for wastes of time and resources. If you knew nothing about the Internet and were trying to figure it out from the data, you would reasonably conclude that it was designed for the transmission of spam and porn. And yet at the same time, there’s more amazing stuff available to us than ever before, thanks to the Internet.
  • To create something great, you need the means to make a lot of really bad crap. Another example is spectrum. One reason we have this great explosion of innovation in wireless right now is that the US deregulated spectrum. Before that, spectrum was something too precious to be wasted on silliness. But when you deregulate—and say, OK, now waste it—then you get Wi-Fi.
  • If we didn’t have genetic mutations, we wouldn’t have us. You need error to open the door to the adjacent possible.
  • image of the coral reef as a metaphor for where innovation comes from. So what, today, are some of the most reeflike places in the technological realm?
  • Twitter—not to see what people are having for breakfast, of course, but to see what people are talking about, the links to articles and posts that they’re passing along.
  • second example of an information coral reef, and maybe the less predictable one, is the university system. As much as we sometimes roll our eyes at the ivory-tower isolation of universities, they continue to serve as remarkable engines of innovation.
  • Life seems to gravitate toward these complex states where there’s just enough disorder to create new things. There’s a rate of mutation just high enough to let interesting new innovations happen, but not so many mutations that every new generation dies off immediately.
  • , technology is an extension of life. Both life and technology are faces of the same larger system.
  •  
    Kevin Kelly and Steven Johnson on Where Ideas Come From By Wired September 27, 2010  |  2:00 pm  |  Wired October 2010
Weiye Loh

Information technology and economic change: The impact of the printing press | vox - Re... - 0 views

  • Despite the revolutionary technological advance of the printing press in the 15th century, there is precious little economic evidence of its benefits. Using data on 200 European cities between 1450 and 1600, this column finds that economic growth was higher by as much as 60 percentage points in cities that adopted the technology.
  • Historians argue that the printing press was among the most revolutionary inventions in human history, responsible for a diffusion of knowledge and ideas, “dwarfing in scale anything which had occurred since the invention of writing” (Roberts 1996, p. 220). Yet economists have struggled to find any evidence of this information technology revolution in measures of aggregate productivity or per capita income (Clark 2001, Mokyr 2005). The historical data thus present us with a puzzle analogous to the famous Solow productivity paradox – that, until the mid-1990s, the data on macroeconomic productivity showed no effect of innovations in computer-based information technology.
  • In recent work (Dittmar 2010a), I examine the revolution in Renaissance information technology from a new perspective by assembling city-level data on the diffusion of the printing press in 15th-century Europe. The data record each city in which a printing press was established 1450-1500 – some 200 out of over 1,000 historic cities (see also an interview on this site, Dittmar 2010b). The research emphasises cities for three principal reasons. First, the printing press was an urban technology, producing for urban consumers. Second, cities were seedbeds for economic ideas and social groups that drove the emergence of modern growth. Third, city sizes were historically important indicators of economic prosperity, and broad-based city growth was associated with macroeconomic growth (Bairoch 1988, Acemoglu et al. 2005).
  • ...8 more annotations...
  • Figure 1 summarises the data and shows how printing diffused from Mainz 1450-1500. Figure 1. The diffusion of the printing press
  • City-level data on the adoption of the printing press can be exploited to examine two key questions: Was the new technology associated with city growth? And, if so, how large was the association? I find that cities in which printing presses were established 1450-1500 had no prior growth advantage, but subsequently grew far faster than similar cities without printing presses. My work uses a difference-in-differences estimation strategy to document the association between printing and city growth. The estimates suggest early adoption of the printing press was associated with a population growth advantage of 21 percentage points 1500-1600, when mean city growth was 30 percentage points. The difference-in-differences model shows that cities that adopted the printing press in the late 1400s had no prior growth advantage, but grew at least 35 percentage points more than similar non-adopting cities from 1500 to 1600.
  • The restrictions on diffusion meant that cities relatively close to Mainz were more likely to receive the technology other things equal. Printing presses were established in 205 cities 1450-1500, but not in 40 of Europe’s 100 largest cities. Remarkably, regulatory barriers did not limit diffusion. Printing fell outside existing guild regulations and was not resisted by scribes, princes, or the Church (Neddermeyer 1997, Barbier 2006, Brady 2009).
  • Historians observe that printing diffused from Mainz in “concentric circles” (Barbier 2006). Distance from Mainz was significantly associated with early adoption of the printing press, but neither with city growth before the diffusion of printing nor with other observable determinants of subsequent growth. The geographic pattern of diffusion thus arguably allows us to identify exogenous variation in adoption. Exploiting distance from Mainz as an instrument for adoption, I find large and significant estimates of the relationship between the adoption of the printing press and city growth. I find a 60 percentage point growth advantage between 1500-1600.
  • The importance of distance from Mainz is supported by an exercise using “placebo” distances. When I employ distance from Venice, Amsterdam, London, or Wittenberg instead of distance from Mainz as the instrument, the estimated print effect is statistically insignificant.
  • Cities that adopted print media benefitted from positive spillovers in human capital accumulation and technological change broadly defined. These spillovers exerted an upward pressure on the returns to labour, made cities culturally dynamic, and attracted migrants. In the pre-industrial era, commerce was a more important source of urban wealth and income than tradable industrial production. Print media played a key role in the development of skills that were valuable to merchants. Following the invention printing, European presses produced a stream of math textbooks used by students preparing for careers in business.
  • These and hundreds of similar texts worked students through problem sets concerned with calculating exchange rates, profit shares, and interest rates. Broadly, print media was also associated with the diffusion of cutting-edge business practice (such as book-keeping), literacy, and the social ascent of new professionals – merchants, lawyers, officials, doctors, and teachers.
  • The printing press was one of the greatest revolutions in information technology. The impact of the printing press is hard to identify in aggregate data. However, the diffusion of the technology was associated with extraordinary subsequent economic dynamism at the city level. European cities were seedbeds of ideas and business practices that drove the transition to modern growth. These facts suggest that the printing press had very far-reaching consequences through its impact on the development of cities.
qiyi liao

Online Censorship: Obama urged to fine firms for aiding censors - 3 views

Internet activists are urging Barack Obama to pass legislation that would make it illegal for technology companies to collaborate with authoritarian countries that censor the internet. -The Guardi...

started by qiyi liao on 02 Sep 09 no follow-up yet
Weiye Loh

Rationally Speaking: Ray Kurzweil and the Singularity: visionary genius or pseudoscient... - 0 views

  • I will focus on a single detailed essay he wrote entitled “Superintelligence and Singularity,” which was originally published as chapter 1 of his The Singularity is Near (Viking 2005), and has been reprinted in an otherwise insightful collection edited by Susan Schneider, Science Fiction and Philosophy.
  • Kurzweil begins by telling us that he gradually became aware of the coming Singularity, in a process that, somewhat peculiarly, he describes as a “progressive awakening” — a phrase with decidedly religious overtones. He defines the Singularity as “a future period during which the pace of technological change will be so rapid, its impact so deep, that human life will be irreversibly transformed.” Well, by that definition, we have been through several “singularities” already, as technology has often rapidly and irreversibly transformed our lives.
  • The major piece of evidence for Singularitarianism is what “I [Kurzweil] have called the law of accelerating returns (the inherent acceleration of the rate of evolution, with technological evolution as a continuation of biological evolution).”
  • ...9 more annotations...
  • the first obvious serious objection is that technological “evolution” is in no logical way a continuation of biological evolution — the word “evolution” here being applied with completely different meanings. And besides, there is no scientifically sensible way in which biological evolution has been accelerating over the several billion years of its operation on our planet. So much for scientific accuracy and logical consistency.
  • here is a bit that will give you an idea of why some people think of Singularitarianism as a secular religion: “The Singularity will allow us to transcend [the] limitations of our biological bodies and brains. We will gain power over our fates. Our mortality will be in our own hands. We will be able to live as long as we want.”
  • Fig. 2 of that essay shows a progression through (again, entirely arbitrary) six “epochs,” with the next one (#5) occurring when there will be a merger between technological and human intelligence (somehow, a good thing), and the last one (#6) labeled as nothing less than “the universe wakes up” — a nonsensical outcome further described as “patterns of matter and energy in the universe becom[ing] saturated with intelligence processes and knowledge.” This isn’t just science fiction, it is bad science fiction.
  • “a serious assessment of the history of technology reveals that technological change is exponential. Exponential growth is a feature of any evolutionary process.” First, it is highly questionable that one can even measure “technological change” on a coherent uniform scale. Yes, we can plot the rate of, say, increase in microprocessor speed, but that is but one aspect of “technological change.” As for the idea that any evolutionary process features exponential growth, I don’t know where Kurzweil got it, but it is simply wrong, for one thing because biological evolution does not have any such feature — as any student of Biology 101 ought to know.
  • Kurzweil’s ignorance of evolution is manifested again a bit later, when he claims — without argument, as usual — that “Evolution is a process of creating patterns of increasing order. ... It’s the evolution of patterns that constitutes the ultimate story of the world. ... Each stage or epoch uses the information-processing methods of the previous epoch to create the next.” I swear, I was fully expecting a scholarly reference to Deepak Chopra at the end of that sentence. Again, “evolution” is a highly heterogeneous term that picks completely different concepts, such as cosmic “evolution” (actually just change over time), biological evolution (which does have to do with the creation of order, but not in Kurzweil’s blatantly teleological sense), and technological “evolution” (which is certainly yet another type of beast altogether, since it requires intelligent design). And what on earth does it mean that each epoch uses the “methods” of the previous one to “create” the next one?
  • As we have seen, the whole idea is that human beings will merge with machines during the ongoing process of ever accelerating evolution, an event that will eventually lead to the universe awakening to itself, or something like that. Now here is the crucial question: how come this has not happened already?
  • To appreciate the power of this argument you may want to refresh your memory about the Fermi Paradox, a serious (though in that case, not a knockdown) argument against the possibility of extraterrestrial intelligent life. The story goes that physicist Enrico Fermi (the inventor of the first nuclear reactor) was having lunch with some colleagues, back in 1950. His companions were waxing poetic about the possibility, indeed the high likelihood, that the galaxy is teeming with intelligent life forms. To which Fermi asked something along the lines of: “Well, where are they, then?”
  • The idea is that even under very pessimistic (i.e., very un-Kurzweil like) expectations about how quickly an intelligent civilization would spread across the galaxy (without even violating the speed of light limit!), and given the mind boggling length of time the galaxy has already existed, it becomes difficult (though, again, not impossible) to explain why we haven’t seen the darn aliens yet.
  • Now, translate that to Kurzweil’s much more optimistic predictions about the Singularity (which allegedly will occur around 2045, conveniently just a bit after Kurzweil’s expected demise, given that he is 63 at the time of this writing). Considering that there is no particular reason to think that planet earth, or the human species, has to be the one destined to trigger the big event, why is it that the universe hasn’t already “awakened” as a result of a Singularity occurring somewhere else at some other time?
Weiye Loh

McKinsey & Company - Clouds, big data, and smart assets: Ten tech-enabled business tren... - 0 views

  • 1. Distributed cocreation moves into the mainstreamIn the past few years, the ability to organise communities of Web participants to develop, market, and support products and services has moved from the margins of business practice to the mainstream. Wikipedia and a handful of open-source software developers were the pioneers. But in signs of the steady march forward, 70 per cent of the executives we recently surveyed said that their companies regularly created value through Web communities. Similarly, more than 68m bloggers post reviews and recommendations about products and services.
  • for every success in tapping communities to create value, there are still many failures. Some companies neglect the up-front research needed to identify potential participants who have the right skill sets and will be motivated to participate over the longer term. Since cocreation is a two-way process, companies must also provide feedback to stimulate continuing participation and commitment. Getting incentives right is important as well: cocreators often value reputation more than money. Finally, an organisation must gain a high level of trust within a Web community to earn the engagement of top participants.
  • 2. Making the network the organisation In earlier research, we noted that the Web was starting to force open the boundaries of organisations, allowing nonemployees to offer their expertise in novel ways. We called this phenomenon "tapping into a world of talent." Now many companies are pushing substantially beyond that starting point, building and managing flexible networks that extend across internal and often even external borders. The recession underscored the value of such flexibility in managing volatility. We believe that the more porous, networked organisations of the future will need to organise work around critical tasks rather than molding it to constraints imposed by corporate structures.
  • ...10 more annotations...
  • 3. Collaboration at scale Across many economies, the number of people who undertake knowledge work has grown much more quickly than the number of production or transactions workers. Knowledge workers typically are paid more than others, so increasing their productivity is critical. As a result, there is broad interest in collaboration technologies that promise to improve these workers' efficiency and effectiveness. While the body of knowledge around the best use of such technologies is still developing, a number of companies have conducted experiments, as we see in the rapid growth rates of video and Web conferencing, expected to top 20 per cent annually during the next few years.
  • 4. The growing ‘Internet of Things' The adoption of RFID (radio-frequency identification) and related technologies was the basis of a trend we first recognised as "expanding the frontiers of automation." But these methods are rudimentary compared with what emerges when assets themselves become elements of an information system, with the ability to capture, compute, communicate, and collaborate around information—something that has come to be known as the "Internet of Things." Embedded with sensors, actuators, and communications capabilities, such objects will soon be able to absorb and transmit information on a massive scale and, in some cases, to adapt and react to changes in the environment automatically. These "smart" assets can make processes more efficient, give products new capabilities, and spark novel business models. Auto insurers in Europe and the United States are testing these waters with offers to install sensors in customers' vehicles. The result is new pricing models that base charges for risk on driving behavior rather than on a driver's demographic characteristics. Luxury-auto manufacturers are equipping vehicles with networked sensors that can automatically take evasive action when accidents are about to happen. In medicine, sensors embedded in or worn by patients continuously report changes in health conditions to physicians, who can adjust treatments when necessary. Sensors in manufacturing lines for products as diverse as computer chips and pulp and paper take detailed readings on process conditions and automatically make adjustments to reduce waste, downtime, and costly human interventions.
  • 5. Experimentation and big data Could the enterprise become a full-time laboratory? What if you could analyse every transaction, capture insights from every customer interaction, and didn't have to wait for months to get data from the field? What if…? Data are flooding in at rates never seen before—doubling every 18 months—as a result of greater access to customer data from public, proprietary, and purchased sources, as well as new information gathered from Web communities and newly deployed smart assets. These trends are broadly known as "big data." Technology for capturing and analysing information is widely available at ever-lower price points. But many companies are taking data use to new levels, using IT to support rigorous, constant business experimentation that guides decisions and to test new products, business models, and innovations in customer experience. In some cases, the new approaches help companies make decisions in real time. This trend has the potential to drive a radical transformation in research, innovation, and marketing.
  • Using experimentation and big data as essential components of management decision making requires new capabilities, as well as organisational and cultural change. Most companies are far from accessing all the available data. Some haven't even mastered the technologies needed to capture and analyse the valuable information they can access. More commonly, they don't have the right talent and processes to design experiments and extract business value from big data, which require changes in the way many executives now make decisions: trusting instincts and experience over experimentation and rigorous analysis. To get managers at all echelons to accept the value of experimentation, senior leaders must buy into a "test and learn" mind-set and then serve as role models for their teams.
  • 6. Wiring for a sustainable world Even as regulatory frameworks continue to evolve, environmental stewardship and sustainability clearly are C-level agenda topics. What's more, sustainability is fast becoming an important corporate-performance metric—one that stakeholders, outside influencers, and even financial markets have begun to track. Information technology plays a dual role in this debate: it is both a significant source of environmental emissions and a key enabler of many strategies to mitigate environmental damage. At present, information technology's share of the world's environmental footprint is growing because of the ever-increasing demand for IT capacity and services. Electricity produced to power the world's data centers generates greenhouse gases on the scale of countries such as Argentina or the Netherlands, and these emissions could increase fourfold by 2020. McKinsey research has shown, however, that the use of IT in areas such as smart power grids, efficient buildings, and better logistics planning could eliminate five times the carbon emissions that the IT industry produces.
  • 7. Imagining anything as a service Technology now enables companies to monitor, measure, customise, and bill for asset use at a much more fine-grained level than ever before. Asset owners can therefore create services around what have traditionally been sold as products. Business-to-business (B2B) customers like these service offerings because they allow companies to purchase units of a service and to account for them as a variable cost rather than undertake large capital investments. Consumers also like this "paying only for what you use" model, which helps them avoid large expenditures, as well as the hassles of buying and maintaining a product.
  • In the IT industry, the growth of "cloud computing" (accessing computer resources provided through networks rather than running software or storing data on a local computer) exemplifies this shift. Consumer acceptance of Web-based cloud services for everything from e-mail to video is of course becoming universal, and companies are following suit. Software as a service (SaaS), which enables organisations to access services such as customer relationship management, is growing at a 17 per cent annual rate. The biotechnology company Genentech, for example, uses Google Apps for e-mail and to create documents and spreadsheets, bypassing capital investments in servers and software licenses. This development has created a wave of computing capabilities delivered as a service, including infrastructure, platform, applications, and content. And vendors are competing, with innovation and new business models, to match the needs of different customers.
  • 8. The age of the multisided business model Multisided business models create value through interactions among multiple players rather than traditional one-on-one transactions or information exchanges. In the media industry, advertising is a classic example of how these models work. Newspapers, magasines, and television stations offer content to their audiences while generating a significant portion of their revenues from third parties: advertisers. Other revenue, often through subscriptions, comes directly from consumers. More recently, this advertising-supported model has proliferated on the Internet, underwriting Web content sites, as well as services such as search and e-mail (see trend number seven, "Imagining anything as a service," earlier in this article). It is now spreading to new markets, such as enterprise software: Spiceworks offers IT-management applications to 950,000 users at no cost, while it collects advertising from B2B companies that want access to IT professionals.
  • 9. Innovating from the bottom of the pyramid The adoption of technology is a global phenomenon, and the intensity of its usage is particularly impressive in emerging markets. Our research has shown that disruptive business models arise when technology combines with extreme market conditions, such as customer demand for very low price points, poor infrastructure, hard-to-access suppliers, and low cost curves for talent. With an economic recovery beginning to take hold in some parts of the world, high rates of growth have resumed in many developing nations, and we're seeing companies built around the new models emerging as global players. Many multinationals, meanwhile, are only starting to think about developing markets as wellsprings of technology-enabled innovation rather than as traditional manufacturing hubs.
  • 10. Producing public good on the grid The role of governments in shaping global economic policy will expand in coming years. Technology will be an important factor in this evolution by facilitating the creation of new types of public goods while helping to manage them more effectively. This last trend is broad in scope and draws upon many of the other trends described above.
Weiye Loh

Let There Be More Efficient Light - NYTimes.com - 0 views

  • LAST week Michele Bachmann, a Republican representative from Minnesota, introduced a bill to roll back efficiency standards for light bulbs, which include a phasing out of incandescent bulbs in favor of more energy-efficient bulbs. The “government has no business telling an individual what kind of light bulb to buy,” she declared.
  • But this opposition ignores another, more important bit of American history: the critical role that government-mandated standards have played in scientific and industrial innovation.
  • inventions alone weren’t enough to guarantee progress. Indeed, at the time the lack of standards for everything from weights and measures to electricity — even the gallon, for example, had eight definitions — threatened to overwhelm industry and consumers with a confusing array of incompatible choices.
  • ...5 more annotations...
  • This wasn’t the case everywhere. Germany’s standards agency, established in 1887, was busy setting rules for everything from the content of dyes to the process for making porcelain; other European countries soon followed suit. Higher-quality products, in turn, helped the growth in Germany’s trade exceed that of the United States in the 1890s. America finally got its act together in 1894, when Congress standardized the meaning of what are today common scientific measures, including the ohm, the volt, the watt and the henry, in line with international metrics. And, in 1901, the United States became the last major economic power to establish an agency to set technological standards. The result was a boom in product innovation in all aspects of life during the 20th century. Today we can go to our hardware store and choose from hundreds of light bulbs that all conform to government-mandated quality and performance standards.
  • Technological standards not only promote innovation — they also can help protect one country’s industries from falling behind those of other countries. Today China, India and other rapidly growing nations are adopting standards that speed the deployment of new technologies. Without similar requirements to manufacture more technologically advanced products, American companies risk seeing the overseas markets for their products shrink while innovative goods from other countries flood the domestic market. To prevent that from happening, America needs not only to continue developing standards, but also to devise a strategy to apply them consistently and quickly.
  • The best approach would be to borrow from Japan, whose Top Runner program sets energy-efficiency standards by identifying technological leaders in a particular industry — say, washing machines — and mandating that the rest of the industry keep up. As technologies improve, the standards change as well, enabling a virtuous cycle of improvement. At the same time, the government should work with businesses to devise multidimensional standards, so that consumers don’t balk at products because they sacrifice, say, brightness and cost for energy efficiency.
  • This is not to say that innovation doesn’t bring disruption, and American policymakers can’t ignore the jobs that are lost when government standards sweep older technologies into the dustbin of history. An effective way forward on light bulbs, then, would be to apply standards only to those manufacturers that produce or import in large volume. Meanwhile, smaller, legacy light-bulb producers could remain, cushioning the blow to workers and meeting consumer demand.
  • Technologies and the standards that guide their deployment have revolutionized American society. They’ve been so successful, in fact, that the role of government has become invisible — so much so that even members of Congress should be excused for believing the government has no business mandating your choice of light bulbs.
Weiye Loh

Roger Pielke Jr.'s Blog: A Democracy Paradox in Studies of Science and Technology - 0 views

  • I am a co-author along with Eva Lövbrand and Silke Beck on a paper published in the current issue of Science, Technology and Human Values (which I also mentioned on this site last fall).  The paper is titled "A Democracy Paradox in Studies of Science and Technology," (it can also be found here in PDF) and it takes a close look at claims made by scholars who study science and technology that the governance of science and technology ought to be grounded in deliberation among experts and the general public. Political legitimacy, it is argued, derives from such deliberation. However, such claims are themselves almost universally grounded not in deliberation, but authority.  Hence the "democracy paradox."
  • Only when specifying and adhering to internally consistent criteria of legitimacy, will students of science and technology be able to make a convincing case for more deliberative governance of science and technology.For my part (not speaking for my co-authors), appeals to deliberative democracy by science studies scholars can not evade the paradox.  Instead, we must look to other conceptions of democracy to understand the legitimate roles of science and expertise in governance.
Reseena Abdullah

Telecoms in emerging markets - 0 views

http://www.economist.com/printedition/displaystory.cfm?story_id=14483896 The article above details the issue surrounding the telecommunications markets in the developing countries. It mentions how...

started by Reseena Abdullah on 07 Oct 09 no follow-up yet
Jody Poh

Powering our way out of poverty - 3 views

http://news.bbc.co.uk/2/hi/science/nature/8046112.stm Only the first part of the article before "Cheap and Continuous" is relevant. Although the whole article is about saving the environment, it h...

social progress technology ethics justice

started by Jody Poh on 03 Nov 09 no follow-up yet
Weiye Loh

BrainGate gives paralysed the power of mind control | Science | The Observer - 0 views

  • brain-computer interface, or BCI
  • is a branch of science exploring how computers and the human brain can be meshed together. It sounds like science fiction (and can look like it too), but it is motivated by a desire to help chronically injured people. They include those who have lost limbs, people with Lou Gehrig's disease, or those who have been paralysed by severe spinal-cord injuries. But the group of people it might help the most are those whom medicine assumed were beyond all hope: sufferers of "locked-in syndrome".
  • These are often stroke victims whose perfectly healthy minds end up trapped inside bodies that can no longer move. The most famous example was French magazine editor Jean-Dominique Bauby who managed to dictate a memoir, The Diving Bell and the Butterfly, by blinking one eye. In the book, Bauby, who died in 1997 shortly after the book was published, described the prison his body had become for a mind that still worked normally.
  • ...9 more annotations...
  • Now the project is involved with a second set of human trials, pushing the technology to see how far it goes and trying to miniaturise it and make it wireless for a better fit in the brain. BrainGate's concept is simple. It posits that the problem for most patients does not lie in the parts of the brain that control movement, but with the fact that the pathways connecting the brain to the rest of the body, such as the spinal cord, have been broken. BrainGate plugs into the brain, picks up the right neural signals and beams them into a computer where they are translated into moving a cursor or controlling a computer keyboard. By this means, paralysed people can move a robot arm or drive their own wheelchair, just by thinking about it.
  • he and his team are decoding the language of the human brain. This language is made up of electronic signals fired by billions of neurons and it controls everything from our ability to move, to think, to remember and even our consciousness itself. Donoghue's genius was to develop a deceptively small device that can tap directly into the brain and pick up those signals for a computer to translate them. Gold wires are implanted into the brain's tissue at the motor cortex, which controls movement. Those wires feed back to a tiny array – an information storage device – attached to a "pedestal" in the skull. Another wire feeds from the array into a computer. A test subject with BrainGate looks like they have a large plug coming out the top of their heads. Or, as Donoghue's son once described it, they resemble the "human batteries" in The Matrix.
  • BrainGate's highly advanced computer programs are able to decode the neuron signals picked up by the wires and translate them into the subject's desired movement. In crude terms, it is a form of mind-reading based on the idea that thinking about moving a cursor to the right will generate detectably different brain signals than thinking about moving it to the left.
  • The technology has developed rapidly, and last month BrainGate passed a vital milestone when one paralysed patient went past 1,000 days with the implant still in her brain and allowing her to move a computer cursor with her thoughts. The achievement, reported in the prestigious Journal of Neural Engineering, showed that the technology can continue to work inside the human body for unprecedented amounts of time.
  • Donoghue talks enthusiastically of one day hooking up BrainGate to a system of electronic stimulators plugged into the muscles of the arm or legs. That would open up the prospect of patients moving not just a cursor or their wheelchair, but their own bodies.
  • If Nagle's motor cortex was no longer working healthily, the entire BrainGate project could have been rendered pointless. But when Nagle was plugged in and asked to imagine moving his limbs, the signals beamed out with a healthy crackle. "We asked him to imagine moving his arm to the left and to the right and we could hear the activity," Donoghue says. When Nagle first moved a cursor on a screen using only his thoughts, he exclaimed: "Holy shit!"
  • BrainGate and other BCI projects have also piqued the interest of the government and the military. BCI is melding man and machine like no other sector of medicine or science and there are concerns about some of the implications. First, beyond detecting and translating simple movement commands, BrainGate may one day pave the way for mind-reading. A device to probe the innermost thoughts of captured prisoners or dissidents would prove very attractive to some future military or intelligence service. Second, there is the idea that BrainGate or other BCI technologies could pave the way for robot warriors controlled by distant humans using only their minds. At a conference in 2002, a senior American defence official, Anthony Tether, enthused over BCI. "Imagine a warrior with the intellect of a human and the immortality of a machine." Anyone who has seen Terminator might worry about that.
  • Donoghue acknowledges the concerns but has little time for them. When it comes to mind-reading, current BrainGate technology has enough trouble with translating commands for making a fist, let alone probing anyone's mental secrets
  • As for robot warriors, Donoghue was slightly more circumspect. At the moment most BCI research, including BrainGate projects, that touch on the military is focused on working with prosthetic limbs for veterans who have lost arms and legs. But Donoghue thinks it is healthy for scientists to be aware of future issues. "As long as there is a rational dialogue and scientists think about where this is going and what is the reasonable use of the technology, then we are on a good path," he says.
  •  
    The robotic arm clutched a glass and swung it over a series of coloured dots that resembled a Twister gameboard. Behind it, a woman sat entirely immobile in a wheelchair. Slowly, the arm put the glass down, narrowly missing one of the dots. "She's doing that!" exclaims Professor John Donoghue, watching a video of the scene on his office computer - though the woman onscreen had not moved at all. "She actually has the arm under her control," he says, beaming with pride. "We told her to put the glass down on that dot." The woman, who is almost completely paralysed, was using Donoghue's groundbreaking technology to control the robot arm using only her thoughts. Called BrainGate, the device is implanted into her brain and hooked up to a computer to which she sends mental commands. The video played on, giving Donoghue, a silver-haired and neatly bearded man of 62, even more reason to feel pleased. The patient was not satisfied with her near miss and the robot arm lifted the glass again. After a brief hover, the arm positioned the glass on the dot.
Weiye Loh

BioCentre - 0 views

  • Humanity’s End. The main premise of the book is that proposals that would supposedly promise to make us smarter like never before or add thousands of years to our live seem rather far fetched and the domain of mere fantasy. However, it is these very proposals which form the basis of many of the ideas and thoughts presented by advocates of radical enhancement and which are beginning to move from the sidelines to the centre of main stream discussion. A variety of technologies and therapies are being presented to us as options to expand our capabilities and capacities in order for us to become something other than human.
  • Agar takes issue with this and argues against radical human enhancement. He structures his analysis and discussion by focusing on four key figures and their proposals which help to form the core of the case for radical enhancement debate.  First to be examined by Agar is Ray Kurzweil who argues that Man and Machine will become one as technology allows us to transcend our biology. Second, is Aubrey de Grey who is a passionate advocate and pioneer of anti-ageing therapies which allow us to achieve “longevity escape velocity”. Next is Nick Bostrom, a leading transhumanist who defends the morality and rationality of enhancement and finally James Hughes who is a keen advocate of a harmonious democracy of the enhanced and un-enhanced.
  • He avoids falling into any of the pitfalls of basing his argument solely upon the “playing God” question but instead seeks to posit a well founded argument in favour of the precautionary principle.
  • ...10 more annotations...
  • Agar directly tackles Hughes’ ideas of a “democratic transhumanism.” Here as post-humans and humans live shoulder to shoulder in wonderful harmony, all persons have access to the technologies they want in order to promote their own flourishing.  Under girding all of this is the belief that no human should feel pressurised to become enhance. Agar finds no comfort with this and instead can foresee a situation where it would be very difficult for humans to ‘choose’ to remain human.  The pressure to radically enhance would be considerable given the fact that the radically enhanced would no doubt be occupying the positions of power in society and would consider the moral obligation to utilise to the full enhancement techniques as being a moral imperative for the good of society.  For those who were able to withstand then a new underclass would no doubt emerge between the enhanced and the un-enhanced. This is precisely the kind of society which Hughes appears to be overly optimistic will not emerge but which is more akin to Lee Silver’s prediction of the future with the distinction made between the "GenRich" and the "naturals”.  This being the case, the author proposes that we have two options: radical enhancement is either enforced across the board or banned outright. It is the latter option which Agar favours but crucially does not elaborate further on so it is unclear as to how he would attempt such a ban given the complexity of the issue. This is disappointing as any general initial reflections which the author felt able to offer would have added to the discussion and added further strength to his line of argument.
  • A Transhuman Manifesto The final focus for Agar is James Hughes, who published his transhumanist manifesto Citizen Cyborg in 2004. Given the direct connection with politics and public policy this for me was a particularly interesting read. The basic premise to Hughes argument is that once humans and post humans recognise each other as citizens then this will mark the point at which they will be able to get along with each other.
  • Agar takes to task the argument Bostrom made with Toby Ord, concerning claims against enhancement. Bostrom and Ord argue that it boils down to a preference for the status quo; current human intellects and life spans are preferred and deemed best because they are what we have now and what we are familiar with (p. 134).  Agar discusses the fact that in his view, Bostrom falls into a focalism – focusing on and magnifying the positives whilst ignoring the negative implications.  Moreover, Agar goes onto develop and reiterate his earlier point that the sort of radical enhancements Bostrom et al enthusiastically support and promote take us beyond what is human so they are no longer human. It therefore cannot be said to be human enhancement given the fact that the traits or capacities that such enhancement afford us would be in many respects superior to ours, but they would not be ours.
  • With his law of accelerating returns and talk of the Singularity Ray Kurzweil proposes that we are speeding towards a time when our outdated systems of neurons and synapses will be traded for far more efficient electronic circuits, allowing us to become artificially super-intelligent and transferring our minds from brains into machines.
  • Having laid out the main ideas and thinking behind Kurzweil’s proposals, Agar makes the perceptive comment that despite the apparent appeal of greater processing power it would nevertheless be no longer human. Introducing chips to the human body and linking into the human nervous system to computers as per Ray Kurzweil’s proposals will prove interesting but it goes beyond merely creating a copy of us in order to that future replication and uploading can take place. Rather it will constitute something more akin to an upgrade. Electrochemical signals that the brain use to achieve thought travel at 100 metres per second. This is impressive but contrast this with the electrical signals in a computer which travel at 300 million metres per second then the distinction is clear. If the predictions are true how will such radically enhanced and empowered beings live not only the unenhanced but also what will there quality of life really be? In response, Agar favours something what he calls “rational biological conservatism” (pg. 57) where we set limits on how intelligent we can become in light of the fact that it will never be rational to us for human beings to completely upload their minds onto computers.
  • Agar then proceeds to argue that in the pursuit of Kurzweil enhanced capacities and capabilities we might accidentally undermine capacities of equal value. This line of argument would find much sympathy from those who consider human organisms in “ecological” terms, representing a profound interconnectedness which when interfered with presents a series of unknown and unexpected consequences. In other words, our specifies-specific form of intelligence may well be linked to species-specific form of desire. Thus, if we start building upon and enhancing our capacity to protect and promote deeply held convictions and beliefs then due to the interconnectedness, it may well affect and remove our desire to perform such activities (page 70). Agar’s subsequent discussion and reference to the work of Jerry Foder, philosopher and cognitive scientist is particularly helpful in terms of the functioning of the mind by modules and the implications of human-friendly AI verses human-unfriendly AI.
  • In terms of the author’s discussion of Aubrey de Grey, what is refreshing to read from the outset is the author’s clear grasp of Aubrey’s ideas and motivation. Some make the mistake of thinking he is the man who wants to live forever, when in actual fact this is not the case.  De Grey wants to reverse the ageing process - Strategies for Engineered Negligible Senescence (SENS) so that people are living longer and healthier lives. Establishing this clear distinction affords the author the opportunity to offer more grounded critiques of de Grey’s than some of his other critics. The author makes plain that de Grey’s immediate goal is to achieve longevity escape velocity (LEV), where anti-ageing therapies add years to life expectancy faster than age consumes them.
  • In weighing up the benefits of living significantly longer lives, Agar posits a compelling argument that I had not fully seen before. In terms of risk, those radically enhanced to live longer may actually be the most risk adverse and fearful people to live. Taking the example of driving a car, a forty year-old senescing human being who gets into their car to drive to work and is involved in a fatal accident “stands to lose, at most, a few healthy, youthful years and a slightly larger number of years with reduced quality” (p.116). In stark contrast should a negligibly senescent being who drives a car and is involved in an accident resulting in their death, stands to lose on average one thousand, healthy, youthful years (p.116).  
  • De Grey’s response to this seems a little flippant; with the end of ageing comes an increased sense of risk-aversion so the desire for risky activity such as driving will no longer be prevalent. Moreover, plus because we are living for longer we will not be in such a hurry to get to places!  Virtual reality comes into its own at this point as a means by which the negligibly senescent being ‘adrenaline junkie’ can be engaged with activities but without the associated risks. But surely the risk is part of the reason why they would want to engage in snow boarding, bungee jumping et al in the first place. De Grey’s strategy seemingly fails to appreciate the extent to which human beings want “direct” contact with the “real” world.
  • Continuing this idea further though, Agar’s subsequent discussion of the role of fire-fighters is an interesting one.  A negligibly senescent fire fighter may stand to loose more when they are trapped in a burning inferno but being negligibly senescent means that they are better fire-fighters by virtue of increase vitality. Having recently heard de Grey speak and had the privilege of discussing his ideas further with him, Agar’s discussion of De Grey were a particular highlight of the book and made for an engaging discussion. Whilst expressing concern and doubt in relation to De Grey’s ideas, Agar is nevertheless quick and gracious enough to acknowledge that if such therapies could be achieved then De Grey is probably the best person to comment on and achieve such therapies given the depth of knowledge and understanding that he has built up in this area.
Weiye Loh

The internet: is it changing the way we think? | Technology | The Observer - 0 views

  • American magazine the Atlantic lobs an intellectual grenade into our culture. In the summer of 1945, for example, it published an essay by the Massachusetts Institute of Technology (MIT) engineer Vannevar Bush entitled "As We May Think". It turned out to be the blueprint for what eventually emerged as the world wide web. Two summers ago, the Atlantic published an essay by Nicholas Carr, one of the blogosphere's most prominent (and thoughtful) contrarians, under the headline "Is Google Making Us Stupid?".
  • Carr wrote, "I've had an uncomfortable sense that someone, or something, has been tinkering with my brain, remapping the neural circuitry, reprogramming the memory. My mind isn't going – so far as I can tell – but it's changing. I'm not thinking the way I used to think. I can feel it most strongly when I'm reading. Immersing myself in a book or a lengthy article used to be easy. My mind would get caught up in the narrative or the turns of the argument and I'd spend hours strolling through long stretches of prose. That's rarely the case anymore. Now my concentration often starts to drift after two or three pages. I get fidgety, lose the thread, begin looking for something else to do. I feel as if I'm always dragging my wayward brain back to the text. The deep reading that used to come naturally has become a struggle."
  • Carr's target was not really the world's leading search engine, but the impact that ubiquitous, always-on networking is having on our cognitive processes. His argument was that our deepening dependence on networking technology is indeed changing not only the way we think, but also the structure of our brains.
  • ...9 more annotations...
  • Carr's article touched a nerve and has provoked a lively, ongoing debate on the net and in print (he has now expanded it into a book, The Shallows: What the Internet Is Doing to Our Brains). This is partly because he's an engaging writer who has vividly articulated the unease that many adults feel about the way their modi operandi have changed in response to ubiquitous networking.
  • Who bothers to write down or memorise detailed information any more, for example, when they know that Google will always retrieve it if it's needed again? The web has become, in a way, a global prosthesis for our collective memory.
  • easy to dismiss Carr's concern as just the latest episode of the moral panic that always accompanies the arrival of a new communications technology. People fretted about printing, photography, the telephone and television in analogous ways. It even bothered Plato, who argued that the technology of writing would destroy the art of remembering.
  • many commentators who accept the thrust of his argument seem not only untroubled by its far-reaching implications but are positively enthusiastic about them. When the Pew Research Centre's Internet & American Life project asked its panel of more than 370 internet experts for their reaction, 81% of them agreed with the proposition that "people's use of the internet has enhanced human intelligence".
  • As a writer, thinker, researcher and teacher, what I can attest to is that the internet is changing our habits of thinking, which isn't the same thing as changing our brains. The brain is like any other muscle – if you don't stretch it, it gets both stiff and flabby. But if you exercise it regularly, and cross-train, your brain will be flexible, quick, strong and versatile.
  • he internet is analogous to a weight-training machine for the brain, as compared with the free weights provided by libraries and books. Each method has its advantage, but used properly one works you harder. Weight machines are directive and enabling: they encourage you to think you've worked hard without necessarily challenging yourself. The internet can be the same: it often tells us what we think we know, spreading misinformation and nonsense while it's at it. It can substitute surface for depth, imitation for originality, and its passion for recycling would surpass the most committed environmentalist.
  • I've seen students' thinking habits change dramatically: if information is not immediately available via a Google search, students are often stymied. But of course what a Google search provides is not the best, wisest or most accurate answer, but the most popular one.
  • But knowledge is not the same thing as information, and there is no question to my mind that the access to raw information provided by the internet is unparalleled and democratising. Admittance to elite private university libraries and archives is no longer required, as they increasingly digitise their archives. We've all read the jeremiads that the internet sounds the death knell of reading, but people read online constantly – we just call it surfing now. What they are reading is changing, often for the worse; but it is also true that the internet increasingly provides a treasure trove of rare books, documents and images, and as long as we have free access to it, then the internet can certainly be a force for education and wisdom, and not just for lies, damned lies, and false statistics.
  • In the end, the medium is not the message, and the internet is just a medium, a repository and an archive. Its greatest virtue is also its greatest weakness: it is unselective. This means that it is undiscriminating, in both senses of the word. It is indiscriminate in its principles of inclusion: anything at all can get into it. But it also – at least so far – doesn't discriminate against anyone with access to it. This is changing rapidly, of course, as corporations and governments seek to exert control over it. Knowledge may not be the same thing as power, but it is unquestionably a means to power. The question is, will we use the internet's power for good, or for evil? The jury is very much out. The internet itself is disinterested: but what we use it for is not.
  •  
    The internet: is it changing the way we think? American writer Nicholas Carr's claim that the internet is not only shaping our lives but physically altering our brains has sparked a lively and ongoing debate, says John Naughton. Below, a selection of writers and experts offer their opinion
Weiye Loh

The messy business of cleaning up carbon policy (and how to sell it to the electorate) ... - 0 views

  • 1. Putting a price on carbon is not only about the climate.Yes, humans are affecting the climate and reducing carbon dioxide emissions is a key commitment of this government, and indeed the stated views of the opposition. But there are other reasons to price carbon, primarily to put Australia at the forefront of a global energy technology revolution that is already underway.In future years and decades the world is going to need vastly more energy that is secure, reliable, clean and affordable. Achieving these outcomes will require an energy technology revolution. The purpose of pricing carbon is to raise the revenues needed to invest in this future, just as we invest in health, agriculture and defence.
  • 2. A price on carbon raises revenues to invest in stimulating that energy technology revolution.Australia emits almost 400 million tonnes of carbon dioxide into the atmosphere every year. In round numbers, every dollar carbon tax per tonne on those emissions would raise about A$100 million. A significant portion of the proceeds from a carbon tax should be used to invest in energy technology innovation, using today’s energy economy to build a bridge to tomorrow’s economy. This is exactly the strategy that India has adopted with a small levy on coal and Germany has adopted with a tax on nuclear fuel rods, with proceeds in both instances invested into energy innovation.
  • 3. The purpose of a carbon tax is not to make energy, food, petrol or consumer goods appreciably more expensive.Just as scientists are in broad agreement that humans are affecting the global climate, economists and other experts are in broad agreement that we cannot revolutionise our energy economy through pricing mechanisms alone. Thus, we propose starting with a low carbon tax - one that has broad political support - and then committing to increasing it in a predictable manner over time.The Coalition has proposed a “direct action plan” on carbon policy that would cost A$30 billion over the next 8 years, which is the equivalent of about a $2.50 per tonne carbon tax. The question to be put to the Coalition is not whether we should be investing in a carbon policy, as we agree on that point, but how much and how it should be paid for. The Coalition’s plans leave unanswered how they would pay for their plan.A carbon tax offers a responsible and effective manner to raise funds without harming the economy or jobs. In fact, to the extent that investments in energy innovation bear fruit, new markets will be opened and new jobs will be created. The Coalition’s plan is not focused on energy technology innovation.The question for the Coalition should thus be, at what level would you set a carbon tax (or what other taxes would you raise?), and how would you invest the proceeds in a manner that accelerates energy technology innovation?
  • ...1 more annotation...
  • 4. Even a low carbon tax will make some goods cost a bit more, so it is important to help those who are most affected.Our carbon tax proposal is revenue neutral in the sense that we will lower other taxes in direct proportion to the impact, however modest, of a low carbon tax. We will do this with particular attention to those who may be most directly affected by a price on carbon.In addition, some portion of the revenue raised by a carbon tax will be returned to the public. But not all. It is important to invest in tomorrow’s energy technologies today and a carbon tax provides the mechanism for doing so.
Weiye Loh

Google's Next Mission: Fighting Violent Extremism | Fast Company - 0 views

  • Technology, of course, is playing a role both in recruiting members to extremist groups, as well as fueling pro-democracy and other movements--and that’s where Google’s interest lies. "Technology is a part of every challenge in the world, and a part of every solution,” Cohen tells Fast Company. "To the extent that we can bring that technology expertise, and mesh it with the Council on Foreign Relations’ academic expertise--and mesh all of that with the expertise of those who have had these experiences--that's a valuable network to explore these questions."
  • Cohen is the former State Department staffer who is best known for his efforts to bring technology into the country’s diplomatic efforts. But he was originally hired by Condaleezza Rice back in 2006 for a different--though related--purpose: to help Foggy Bottom better understand Middle Eastern youths (many of whom were big technology adopters) and how they could best "deradicalized." Last fall, Cohen joined Google as head of its nascent Google Ideas, which the company is labeling a "think/do tank."
  • This summer’s conference, "Summit Against Violent Extremism," takes place June 26-29 and will bring together about 50 former members of extremist groups--including former neo-Nazis, Muslim fundamentalists, and U.S. gang members--along with another 200 representatives from civil society organizations, academia, private corporations, and victims groups. The hope is to identify some common factors that cause young people to join violent organizations, and to form a network of people working on the issue who can collaborate going forward.
  • ...1 more annotation...
  • One of the technologies where extremism is playing out these days is in Google’s own backyard. While citizen empowerment movements have made use of YouTube to broadcast their messages, so have Terrorist and other groups. Just this week, anti-Hamas extremists kidnapped an Italian peace activist and posted their hostage video to YouTube first before eventually murdering him. YouTube has been criticized in the past for not removing violent videos quick enough. But Cohen says the conference is looking at the root causes that prompt a young person to join one of the groups in the first place. "There are a lot of different dimensions to this challenge," he says. "It’s important not to conflate everything."
  •  
    Neo-Nazi groups and al Qaeda might not seem to have much in common, but they do in one key respect: their recruits tend to be very young. The head of Google's new think tank, Jared Cohen, believes there might be some common reasons why young people are drawn to violent extremist groups, no matter their ideological or philosophical bent. So this summer, Cohen is spearheading a conference, in Dublin, Ireland, to explore what it is that draws young people to these groups and what can be done to redirect them.
Weiye Loh

Android phones record user-locations according to research | Technology | The Guardian - 0 views

  • The discovery that Android devices - which are quickly becoming the best-selling products in the smartphone space - also collect location data indicates how essential such information has become to their effective operation. "Location services", which can help place a user on a map, are increasingly seen as important for providing enhanced services including advertising - which forms the basis of Google's business.
  • Smartphones running Google's Android software collect data about the user's movements in almost exactly the same way as the iPhone, according to an examination of files they contain. The discovery, made by a Swedish researcher, comes as the Democratic senator Al Franken has written to Apple's chief executive Steve Jobs demanding to know why iPhones keep a secret file recording the location of their users as they move around, as the Guardian revealed this week.
  • Magnus Eriksson, a Swedish programmer, has shown that Android phones – now the bestselling smartphones – do the same, though for a shorter period. According to files discovered by Android devices keep a record of the locations and unique IDs of the last 50 mobile masts that it has communicated with, and the last 200 Wi-Fi networks that it has "seen". These are overwritten, oldest first, when the relevant list is full. It is not yet known whether the lists are sent to Google. That differs from Apple, where the data is stored for up to a year.
  • ...4 more annotations...
  • In addition, the file is not easily accessible to users: it requires some computer skills to extract the data. By contrast, the Apple file is easily extracted directly from the computer or phone.
  • Senator Franken has asked Jobs to explain the purpose and extent of the iPhone's tracking. "The existence of this information - stored in an unencrypted format - raises serious privacy concerns," Franken writes in his letter to Jobs. "Anyone who gains access to this single file could likely determine the location of a user's home, the businesses he frequents, the doctors he visits, the schools his children attend, and the trips he has taken - over the past months or even a year."
  • Franken points out that a stolen or lost iPhone or iPad could be used to map out its owner's precise movements "for months at a time" and that it is not limited by age, meaning that it could track the movements of users who are under 13
  • security researcher, Alex Levinson, says that he discovered the file inside the iPhone last year, and that it has been used in the US by the police in a number of cases. He says that its purpose is simply to help the phone determine its location, and that he has seen no evidence that it is sent back to Apple. However documents lodged by Apple with the US Congress suggest that it does use the data if the user agrees to give the company "diagnostic information" from their iPhone or iPad.
Weiye Loh

Lying Adapts to New Technology - NYTimes.com - 0 views

  • Being constantly reachable makes butler lies necessary to many people, and the Cornell researchers concluded in a subsequent study that ambiguities inherent in traditional texting also made them easier.
  • Yet technology is already laying siege to the butler lie. Services like BlackBerry Messenger enable mutual users to track when their texts are read, effectively torpedoing the “sorry, phone died last night” excuse. “Friend tracking” applications like Google Latitude allow people to geographically pinpoint their friends’ mobile phones. So much for “stuck in traffic” when you really overslept.
  • eople are already adapting, finding how to circumvent BlackBerry Messenger and read texts undetected, Dr. Birnholtz said. Others form “lie clubs,” groups who back up one another’s phony texts. But if technology has spawned new ruses, are we actually lying more? So far, researchers say no.
  •  
    Many believe it is easier to lie by text than by phone or in person, but emerging research indicates that's not necessarily true. We've always lied; new technologies are merely changing the ways and the reasons we lie. Witness the "butler lie," a term coined by Cornell University researchers in 2009 to describe lies that politely initiate and terminate instant messaging conversations. ("Gotta go, boss is coming!") Like butlers, they act as social buffers, telling others that we are at lunch when we are just avoiding them.
Weiye Loh

How the Internet Gets Inside Us : The New Yorker - 0 views

  • N.Y.U. professor Clay Shirky—the author of “Cognitive Surplus” and many articles and blog posts proclaiming the coming of the digital millennium—is the breeziest and seemingly most self-confident
  • Shirky believes that we are on the crest of an ever-surging wave of democratized information: the Gutenberg printing press produced the Reformation, which produced the Scientific Revolution, which produced the Enlightenment, which produced the Internet, each move more liberating than the one before.
  • The idea, for instance, that the printing press rapidly gave birth to a new order of information, democratic and bottom-up, is a cruel cartoon of the truth. If the printing press did propel the Reformation, one of the biggest ideas it propelled was Luther’s newly invented absolutist anti-Semitism. And what followed the Reformation wasn’t the Enlightenment, a new era of openness and freely disseminated knowledge. What followed the Reformation was, actually, the Counter-Reformation, which used the same means—i.e., printed books—to spread ideas about what jerks the reformers were, and unleashed a hundred years of religious warfare.
  • ...17 more annotations...
  • If ideas of democracy and freedom emerged at the end of the printing-press era, it wasn’t by some technological logic but because of parallel inventions, like the ideas of limited government and religious tolerance, very hard won from history.
  • As Andrew Pettegree shows in his fine new study, “The Book in the Renaissance,” the mainstay of the printing revolution in seventeenth-century Europe was not dissident pamphlets but royal edicts, printed by the thousand: almost all the new media of that day were working, in essence, for kinglouis.gov.
  • Even later, full-fledged totalitarian societies didn’t burn books. They burned some books, while keeping the printing presses running off such quantities that by the mid-fifties Stalin was said to have more books in print than Agatha Christie.
  • Many of the more knowing Never-Betters turn for cheer not to messy history and mixed-up politics but to psychology—to the actual expansion of our minds.
  • The argument, advanced in Andy Clark’s “Supersizing the Mind” and in Robert K. Logan’s “The Sixth Language,” begins with the claim that cognition is not a little processing program that takes place inside your head, Robby the Robot style. It is a constant flow of information, memory, plans, and physical movements, in which as much thinking goes on out there as in here. If television produced the global village, the Internet produces the global psyche: everyone keyed in like a neuron, so that to the eyes of a watching Martian we are really part of a single planetary brain. Contraptions don’t change consciousness; contraptions are part of consciousness. We may not act better than we used to, but we sure think differently than we did.
  • Cognitive entanglement, after all, is the rule of life. My memories and my wife’s intermingle. When I can’t recall a name or a date, I don’t look it up; I just ask her. Our machines, in this way, become our substitute spouses and plug-in companions.
  • But, if cognitive entanglement exists, so does cognitive exasperation. Husbands and wives deny each other’s memories as much as they depend on them. That’s fine until it really counts (say, in divorce court). In a practical, immediate way, one sees the limits of the so-called “extended mind” clearly in the mob-made Wikipedia, the perfect product of that new vast, supersized cognition: when there’s easy agreement, it’s fine, and when there’s widespread disagreement on values or facts, as with, say, the origins of capitalism, it’s fine, too; you get both sides. The trouble comes when one side is right and the other side is wrong and doesn’t know it. The Shakespeare authorship page and the Shroud of Turin page are scenes of constant conflict and are packed with unreliable information. Creationists crowd cyberspace every bit as effectively as evolutionists, and extend their minds just as fully. Our trouble is not the over-all absence of smartness but the intractable power of pure stupidity, and no machine, or mind, seems extended enough to cure that.
  • Nicholas Carr, in “The Shallows,” William Powers, in “Hamlet’s BlackBerry,” and Sherry Turkle, in “Alone Together,” all bear intimate witness to a sense that the newfound land, the ever-present BlackBerry-and-instant-message world, is one whose price, paid in frayed nerves and lost reading hours and broken attention, is hardly worth the gains it gives us. “The medium does matter,” Carr has written. “As a technology, a book focuses our attention, isolates us from the myriad distractions that fill our everyday lives. A networked computer does precisely the opposite. It is designed to scatter our attention. . . . Knowing that the depth of our thought is tied directly to the intensity of our attentiveness, it’s hard not to conclude that as we adapt to the intellectual environment of the Net our thinking becomes shallower.
  • Carr is most concerned about the way the Internet breaks down our capacity for reflective thought.
  • Powers’s reflections are more family-centered and practical. He recounts, very touchingly, stories of family life broken up by the eternal consultation of smartphones and computer monitors
  • He then surveys seven Wise Men—Plato, Thoreau, Seneca, the usual gang—who have something to tell us about solitude and the virtues of inner space, all of it sound enough, though he tends to overlook the significant point that these worthies were not entirely in favor of the kinds of liberties that we now take for granted and that made the new dispensation possible.
  • Similarly, Nicholas Carr cites Martin Heidegger for having seen, in the mid-fifties, that new technologies would break the meditational space on which Western wisdoms depend. Since Heidegger had not long before walked straight out of his own meditational space into the arms of the Nazis, it’s hard to have much nostalgia for this version of the past. One feels the same doubts when Sherry Turkle, in “Alone Together,” her touching plaint about the destruction of the old intimacy-reading culture by the new remote-connection-Internet culture, cites studies that show a dramatic decline in empathy among college students, who apparently are “far less likely to say that it is valuable to put oneself in the place of others or to try and understand their feelings.” What is to be done?
  • Among Ever-Wasers, the Harvard historian Ann Blair may be the most ambitious. In her book “Too Much to Know: Managing Scholarly Information Before the Modern Age,” she makes the case that what we’re going through is like what others went through a very long while ago. Against the cartoon history of Shirky or Tooby, Blair argues that the sense of “information overload” was not the consequence of Gutenberg but already in place before printing began. She wants us to resist “trying to reduce the complex causal nexus behind the transition from Renaissance to Enlightenment to the impact of a technology or any particular set of ideas.” Anyway, the crucial revolution was not of print but of paper: “During the later Middle Ages a staggering growth in the production of manuscripts, facilitated by the use of paper, accompanied a great expansion of readers outside the monastic and scholastic contexts.” For that matter, our minds were altered less by books than by index slips. Activities that seem quite twenty-first century, she shows, began when people cut and pasted from one manuscript to another; made aggregated news in compendiums; passed around précis. “Early modern finding devices” were forced into existence: lists of authorities, lists of headings.
  • Everyone complained about what the new information technologies were doing to our minds. Everyone said that the flood of books produced a restless, fractured attention. Everyone complained that pamphlets and poems were breaking kids’ ability to concentrate, that big good handmade books were ignored, swept aside by printed works that, as Erasmus said, “are foolish, ignorant, malignant, libelous, mad.” The reader consulting a card catalogue in a library was living a revolution as momentous, and as disorienting, as our own.
  • The book index was the search engine of its era, and needed to be explained at length to puzzled researchers
  • That uniquely evil and necessary thing the comprehensive review of many different books on a related subject, with the necessary oversimplification of their ideas that it demanded, was already around in 1500, and already being accused of missing all the points. In the period when many of the big, classic books that we no longer have time to read were being written, the general complaint was that there wasn’t enough time to read big, classic books.
  • at any given moment, our most complicated machine will be taken as a model of human intelligence, and whatever media kids favor will be identified as the cause of our stupidity. When there were automatic looms, the mind was like an automatic loom; and, since young people in the loom period liked novels, it was the cheap novel that was degrading our minds. When there were telephone exchanges, the mind was like a telephone exchange, and, in the same period, since the nickelodeon reigned, moving pictures were making us dumb. When mainframe computers arrived and television was what kids liked, the mind was like a mainframe and television was the engine of our idiocy. Some machine is always showing us Mind; some entertainment derived from the machine is always showing us Non-Mind.
Weiye Loh

Basqueresearch.com: News - PhD thesis warns of risk of delegating to just a few teacher... - 0 views

  • the incorporation of Information and Communication Technologies into Primary Education brought with it positive changes in the role of the teacher and the student. Teachers and students stopped being mere transmitters and receptors, respectively. The first became mediators of information and the second opted for learning through investigating, discovering and presenting ideas to classmates and teachers. In this way they have, at the same time, the opportunity of getting to know the work of other students, too. Thus, the use of Internet and ICTs reinforce participation and collaboration in the school. According to Dr Altuna, it also helps to boost learning models that are more constructivist, socio-constructivist and even connectivist.
  • Despite its educational possibilities the researcher warns that there are numerous factors that limit the incorporation of Internet into the teaching of the curricular subject in question. These involve aspects such as the time dedicated weekly, technological and computer facilities, accessibility and connection to Internet, the school curriculum and, above all, the knowledge, training and involvement of the teaching staff.
  • the thesis observed a tendency to delegate responsibility for ICT in the school to those teachers who were considered to be “computer experts”. Dr Altuna warns of the risks that this practice runs, as thereby the rest of the staff continues to be untrained and unable to apply ICT and Internet in activities undertaken within their curricular subject. It has to be stressed, therefore, that all should be responsible for the educational measures to be taken so that students acquire digital skills. Also observed was the need for a pedagogic approach to ICT which advises the teaching staff on knowledge about and putting into practice activities in educational innovation.
  • ...2 more annotations...
  • Dr Altuna not only includes the lack of involvement of teaching staff amongst the limitations for incorporating ICT, but also that of the involvement of the families. It was explained that families showed interest in the use of Internet and ICTs as educational tools for their children, but that these, too, excessively delegate to the schools. The researcher stressed that the families also need guidance, as they are concerned about the use by their children of Internet but do not know the best way to go about the problem.
  • Educational psychologist Dr Jon Altuna has carried out a thorough study of the phenomenon of the school 2.0. Concretely, he has looked into the use and level of incorporation of Internet and of Information and Communication Technologies (ICT) into the third cycle of Primary Education, observing at the same time the attitudes of the teaching staff, and of the students and the families of the children in this regard. His PhD, defended at the University of the Basque Country (UPV/EHU), is entitled, Incorporation of Internet into the teaching of the subject Knowledge of the Environment during the third cycle of Primary Education: possibilities and analysis of the situation of a school. Dr Altuna’s research is based on a study of cases undertaken over eight years at a school where new activities involving ICT had been introduced into the curricular subject of Knowledge of the Environment, taught in the fifth and sixth year of Primary Education. The researcher gathered data from 837 students, 134 teachers and 190 families of this school. This study was completed with the experiences of ICT teachers from 21 schools.
  •  
    Despite its educational possibilities the researcher warns that there are numerous factors that limit the incorporation of Internet into the teaching of the curricular subject in question. These involve aspects such as the time dedicated weekly, technological and computer facilities, accessibility and connection to Internet, the school curriculum and, above all, the knowledge, training and involvement of the teaching staff.
1 - 20 of 229 Next › Last »
Showing 20 items per page