Skip to main content

Home/ New Media Ethics 2009 course/ Group items tagged Standard

Rss Feed Group items tagged

Weiye Loh

Let There Be More Efficient Light - NYTimes.com - 0 views

  • LAST week Michele Bachmann, a Republican representative from Minnesota, introduced a bill to roll back efficiency standards for light bulbs, which include a phasing out of incandescent bulbs in favor of more energy-efficient bulbs. The “government has no business telling an individual what kind of light bulb to buy,” she declared.
  • But this opposition ignores another, more important bit of American history: the critical role that government-mandated standards have played in scientific and industrial innovation.
  • inventions alone weren’t enough to guarantee progress. Indeed, at the time the lack of standards for everything from weights and measures to electricity — even the gallon, for example, had eight definitions — threatened to overwhelm industry and consumers with a confusing array of incompatible choices.
  • ...5 more annotations...
  • This wasn’t the case everywhere. Germany’s standards agency, established in 1887, was busy setting rules for everything from the content of dyes to the process for making porcelain; other European countries soon followed suit. Higher-quality products, in turn, helped the growth in Germany’s trade exceed that of the United States in the 1890s. America finally got its act together in 1894, when Congress standardized the meaning of what are today common scientific measures, including the ohm, the volt, the watt and the henry, in line with international metrics. And, in 1901, the United States became the last major economic power to establish an agency to set technological standards. The result was a boom in product innovation in all aspects of life during the 20th century. Today we can go to our hardware store and choose from hundreds of light bulbs that all conform to government-mandated quality and performance standards.
  • Technological standards not only promote innovation — they also can help protect one country’s industries from falling behind those of other countries. Today China, India and other rapidly growing nations are adopting standards that speed the deployment of new technologies. Without similar requirements to manufacture more technologically advanced products, American companies risk seeing the overseas markets for their products shrink while innovative goods from other countries flood the domestic market. To prevent that from happening, America needs not only to continue developing standards, but also to devise a strategy to apply them consistently and quickly.
  • The best approach would be to borrow from Japan, whose Top Runner program sets energy-efficiency standards by identifying technological leaders in a particular industry — say, washing machines — and mandating that the rest of the industry keep up. As technologies improve, the standards change as well, enabling a virtuous cycle of improvement. At the same time, the government should work with businesses to devise multidimensional standards, so that consumers don’t balk at products because they sacrifice, say, brightness and cost for energy efficiency.
  • This is not to say that innovation doesn’t bring disruption, and American policymakers can’t ignore the jobs that are lost when government standards sweep older technologies into the dustbin of history. An effective way forward on light bulbs, then, would be to apply standards only to those manufacturers that produce or import in large volume. Meanwhile, smaller, legacy light-bulb producers could remain, cushioning the blow to workers and meeting consumer demand.
  • Technologies and the standards that guide their deployment have revolutionized American society. They’ve been so successful, in fact, that the role of government has become invisible — so much so that even members of Congress should be excused for believing the government has no business mandating your choice of light bulbs.
Weiye Loh

Skepticblog » Further Thoughts on Atheism - 0 views

  • Even before I started writing Evolution: How We and All Living Things Came to Be I knew that it would very briefly mention religion, make a mild assertion that religious questions are out of scope for science, and move on. I knew this was likely to provoke blow-back from some in the atheist community, and I knew mentioning that blow-back in my recent post “The Standard Pablum — Science and Atheism” would generate more.
  • Still, I was surprised by the quantity of the responses to the blog post (208 comments as of this moment, many of them substantial letters), and also by the fierceness of some of those responses. For example, according to one poster, “you not only pandered, you lied. And even if you weren’t lying, you lied.” (Several took up this “lying” theme.) Another, disappointed that my children’s book does not tell a general youth audience to look to “secular humanism for guidance,” declared  that “I’d have to tear out that page if I bought the book.”
  • I don’t mean to suggest that there are not points of legitimate disagreement in the mix — there are, many of them stated powerfully. There are also statements of support, vigorous debate, and (for me at least) a good deal of food for thought. I invite anyone to browse the thread, although I’d urge you to skim some of it. (The internet is after all a hyperbole-generating machine.)
  • ...10 more annotations...
  • I lack any belief in any deity. More than that, I am persuaded (by philosophical argument, not scientific evidence) to a high degree of confidence that gods and an afterlife do not exist.
  • do try to distinguish between my work as a science writer and skeptical activist on the one hand, and my personal opinions about religion and humanism on the other.
  • Atheism is a practical handicap for science outreach. I’m not naive about this, but I’m not cynical either. I’m a writer. I’m in the business of communicating ideas about science, not throwing up roadblocks and distractions. It’s good communication to keep things as clear, focused, and on-topic as possible.
  • Atheism is divisive for the skeptical community, and it distracts us from our core mandate. I was blunt about this in my 2007 essay “Where Do We Go From Here?”, writing, I’m both an atheist and a secular humanist, but it is clear to me that atheism is an albatross for the skeptical movement. It divides us, it distracts us, and it marginalizes us. Frankly, we can’t afford that. We need all the help we can get.
  • In What Do I Do Next? I urged skeptics to remember that there are many other skeptics who do hold or identify with some religion. Indeed, the modern skeptical movement is built partly on the work of people of faith (including giants like Harry Houdini and Martin Gardner). You don’t, after all, have to be against god to be against fraud.
  • In my Skeptical Inquirer article “The Paradoxical Future of Skepticism” I argued that skeptics must set aside the conceit that our goal is a cultural revolution or the dawning of a new Enlightenment. … When we focus on that distant, receding, and perhaps illusory goal, we fail to see the practical good we can do, the harm-reduction opportunities right in front of us. The long view subverts our understanding of the scale and hazard of paranormal beliefs, leading to sentiments that the paranormal is “trivial” or “played out.” By contrast, the immediate, local, human view — the view that asks “Will this help someone?” — sees obvious opportunities for every local group and grassroots skeptic to make a meaningful difference.
  • This practical argument, that skepticism can get more done if we keep our mandate tight and avoid alienating our best friends, seems to me an important one. Even so, it is not my main reason for arguing that atheism and skepticism are different projects.
  • In my opinion, Metaphysics and ethics are out of scope for science — and therefore out of scope for skepticism. This is by far the most important reason I set aside my own atheism when I put on my “skeptic” hat. It’s not that I don’t think atheism is rational — I do. That’s why I’m an atheist. But I know that I cannot claim scientific authority for a conclusion that science cannot test, confirm, or disprove. And so, I restrict myself as much as possible, in my role as a skeptic and science writer, to investigable claims. I’ve become a cheerleader for this “testable claims” criterion (and I’ll discuss it further in future posts) but it’s not a new or radical constriction of the scope of skepticism. It’s the traditional position occupied by skeptical organizations for decades.
  • In much of the commentary, I see an assumption that I must not really believe that testable paranormal and pseudoscientific claims (“I can read minds”) are different in kind from the untestable claims we often find at the core of religion (“god exists”). I acknowledge that many smart people disagree on this point, but I assure you that this is indeed what I think.
  • I’d like to call out one blogger’s response to my “Standard Pablum” post. The author certainly disagrees with me (we’ve discussed the topic often on Twitter), but I thank him for describing my position fairly: From what I’ve read of Daniel’s writings before, this seems to be a very consistent position that he has always maintained, not a new one he adopted for the book release. It appears to me that when Daniel says that science has nothing to say about religion, he really means it. I have nothing to say to that. It also appears to me that when he says skepticism is a “different project than atheism” he also means it.
  •  
    FURTHER THOUGHTS ON ATHEISM by DANIEL LOXTON, Mar 05 2010
Weiye Loh

Odds Are, It's Wrong - Science News - 0 views

  • science has long been married to mathematics. Generally it has been for the better. Especially since the days of Galileo and Newton, math has nurtured science. Rigorous mathematical methods have secured science’s fidelity to fact and conferred a timeless reliability to its findings.
  • a mutant form of math has deflected science’s heart from the modes of calculation that had long served so faithfully. Science was seduced by statistics, the math rooted in the same principles that guarantee profits for Las Vegas casinos. Supposedly, the proper use of statistics makes relying on scientific results a safe bet. But in practice, widespread misuse of statistical methods makes science more like a crapshoot.
  • science’s dirtiest secret: The “scientific method” of testing hypotheses by statistical analysis stands on a flimsy foundation. Statistical tests are supposed to guide scientists in judging whether an experimental result reflects some real effect or is merely a random fluke, but the standard methods mix mutually inconsistent philosophies and offer no meaningful basis for making such decisions. Even when performed correctly, statistical tests are widely misunderstood and frequently misinterpreted. As a result, countless conclusions in the scientific literature are erroneous, and tests of medical dangers or treatments are often contradictory and confusing.
  • ...24 more annotations...
  • Experts in the math of probability and statistics are well aware of these problems and have for decades expressed concern about them in major journals. Over the years, hundreds of published papers have warned that science’s love affair with statistics has spawned countless illegitimate findings. In fact, if you believe what you read in the scientific literature, you shouldn’t believe what you read in the scientific literature.
  • “There are more false claims made in the medical literature than anybody appreciates,” he says. “There’s no question about that.”Nobody contends that all of science is wrong, or that it hasn’t compiled an impressive array of truths about the natural world. Still, any single scientific study alone is quite likely to be incorrect, thanks largely to the fact that the standard statistical system for drawing conclusions is, in essence, illogical. “A lot of scientists don’t understand statistics,” says Goodman. “And they don’t understand statistics because the statistics don’t make sense.”
  • In 2007, for instance, researchers combing the medical literature found numerous studies linking a total of 85 genetic variants in 70 different genes to acute coronary syndrome, a cluster of heart problems. When the researchers compared genetic tests of 811 patients that had the syndrome with a group of 650 (matched for sex and age) that didn’t, only one of the suspect gene variants turned up substantially more often in those with the syndrome — a number to be expected by chance.“Our null results provide no support for the hypothesis that any of the 85 genetic variants tested is a susceptibility factor” for the syndrome, the researchers reported in the Journal of the American Medical Association.How could so many studies be wrong? Because their conclusions relied on “statistical significance,” a concept at the heart of the mathematical analysis of modern scientific experiments.
  • Statistical significance is a phrase that every science graduate student learns, but few comprehend. While its origins stretch back at least to the 19th century, the modern notion was pioneered by the mathematician Ronald A. Fisher in the 1920s. His original interest was agriculture. He sought a test of whether variation in crop yields was due to some specific intervention (say, fertilizer) or merely reflected random factors beyond experimental control.Fisher first assumed that fertilizer caused no difference — the “no effect” or “null” hypothesis. He then calculated a number called the P value, the probability that an observed yield in a fertilized field would occur if fertilizer had no real effect. If P is less than .05 — meaning the chance of a fluke is less than 5 percent — the result should be declared “statistically significant,” Fisher arbitrarily declared, and the no effect hypothesis should be rejected, supposedly confirming that fertilizer works.Fisher’s P value eventually became the ultimate arbiter of credibility for science results of all sorts
  • But in fact, there’s no logical basis for using a P value from a single study to draw any conclusion. If the chance of a fluke is less than 5 percent, two possible conclusions remain: There is a real effect, or the result is an improbable fluke. Fisher’s method offers no way to know which is which. On the other hand, if a study finds no statistically significant effect, that doesn’t prove anything, either. Perhaps the effect doesn’t exist, or maybe the statistical test wasn’t powerful enough to detect a small but real effect.
  • Soon after Fisher established his system of statistical significance, it was attacked by other mathematicians, notably Egon Pearson and Jerzy Neyman. Rather than testing a null hypothesis, they argued, it made more sense to test competing hypotheses against one another. That approach also produces a P value, which is used to gauge the likelihood of a “false positive” — concluding an effect is real when it actually isn’t. What  eventually emerged was a hybrid mix of the mutually inconsistent Fisher and Neyman-Pearson approaches, which has rendered interpretations of standard statistics muddled at best and simply erroneous at worst. As a result, most scientists are confused about the meaning of a P value or how to interpret it. “It’s almost never, ever, ever stated correctly, what it means,” says Goodman.
  • experimental data yielding a P value of .05 means that there is only a 5 percent chance of obtaining the observed (or more extreme) result if no real effect exists (that is, if the no-difference hypothesis is correct). But many explanations mangle the subtleties in that definition. A recent popular book on issues involving science, for example, states a commonly held misperception about the meaning of statistical significance at the .05 level: “This means that it is 95 percent certain that the observed difference between groups, or sets of samples, is real and could not have arisen by chance.”
  • That interpretation commits an egregious logical error (technical term: “transposed conditional”): confusing the odds of getting a result (if a hypothesis is true) with the odds favoring the hypothesis if you observe that result. A well-fed dog may seldom bark, but observing the rare bark does not imply that the dog is hungry. A dog may bark 5 percent of the time even if it is well-fed all of the time. (See Box 2)
    • Weiye Loh
       
      Does the problem then, lie not in statistics, but the interpretation of statistics? Is the fallacy of appeal to probability is at work in such interpretation? 
  • Another common error equates statistical significance to “significance” in the ordinary use of the word. Because of the way statistical formulas work, a study with a very large sample can detect “statistical significance” for a small effect that is meaningless in practical terms. A new drug may be statistically better than an old drug, but for every thousand people you treat you might get just one or two additional cures — not clinically significant. Similarly, when studies claim that a chemical causes a “significantly increased risk of cancer,” they often mean that it is just statistically significant, possibly posing only a tiny absolute increase in risk.
  • Statisticians perpetually caution against mistaking statistical significance for practical importance, but scientific papers commit that error often. Ziliak studied journals from various fields — psychology, medicine and economics among others — and reported frequent disregard for the distinction.
  • “I found that eight or nine of every 10 articles published in the leading journals make the fatal substitution” of equating statistical significance to importance, he said in an interview. Ziliak’s data are documented in the 2008 book The Cult of Statistical Significance, coauthored with Deirdre McCloskey of the University of Illinois at Chicago.
  • Multiplicity of mistakesEven when “significance” is properly defined and P values are carefully calculated, statistical inference is plagued by many other problems. Chief among them is the “multiplicity” issue — the testing of many hypotheses simultaneously. When several drugs are tested at once, or a single drug is tested on several groups, chances of getting a statistically significant but false result rise rapidly.
  • Recognizing these problems, some researchers now calculate a “false discovery rate” to warn of flukes disguised as real effects. And genetics researchers have begun using “genome-wide association studies” that attempt to ameliorate the multiplicity issue (SN: 6/21/08, p. 20).
  • Many researchers now also commonly report results with confidence intervals, similar to the margins of error reported in opinion polls. Such intervals, usually given as a range that should include the actual value with 95 percent confidence, do convey a better sense of how precise a finding is. But the 95 percent confidence calculation is based on the same math as the .05 P value and so still shares some of its problems.
  • Statistical problems also afflict the “gold standard” for medical research, the randomized, controlled clinical trials that test drugs for their ability to cure or their power to harm. Such trials assign patients at random to receive either the substance being tested or a placebo, typically a sugar pill; random selection supposedly guarantees that patients’ personal characteristics won’t bias the choice of who gets the actual treatment. But in practice, selection biases may still occur, Vance Berger and Sherri Weinstein noted in 2004 in ControlledClinical Trials. “Some of the benefits ascribed to randomization, for example that it eliminates all selection bias, can better be described as fantasy than reality,” they wrote.
  • Randomization also should ensure that unknown differences among individuals are mixed in roughly the same proportions in the groups being tested. But statistics do not guarantee an equal distribution any more than they prohibit 10 heads in a row when flipping a penny. With thousands of clinical trials in progress, some will not be well randomized. And DNA differs at more than a million spots in the human genetic catalog, so even in a single trial differences may not be evenly mixed. In a sufficiently large trial, unrandomized factors may balance out, if some have positive effects and some are negative. (See Box 3) Still, trial results are reported as averages that may obscure individual differences, masking beneficial or harm­ful effects and possibly leading to approval of drugs that are deadly for some and denial of effective treatment to others.
  • nother concern is the common strategy of combining results from many trials into a single “meta-analysis,” a study of studies. In a single trial with relatively few participants, statistical tests may not detect small but real and possibly important effects. In principle, combining smaller studies to create a larger sample would allow the tests to detect such small effects. But statistical techniques for doing so are valid only if certain criteria are met. For one thing, all the studies conducted on the drug must be included — published and unpublished. And all the studies should have been performed in a similar way, using the same protocols, definitions, types of patients and doses. When combining studies with differences, it is necessary first to show that those differences would not affect the analysis, Goodman notes, but that seldom happens. “That’s not a formal part of most meta-analyses,” he says.
  • Meta-analyses have produced many controversial conclusions. Common claims that antidepressants work no better than placebos, for example, are based on meta-analyses that do not conform to the criteria that would confer validity. Similar problems afflicted a 2007 meta-analysis, published in the New England Journal of Medicine, that attributed increased heart attack risk to the diabetes drug Avandia. Raw data from the combined trials showed that only 55 people in 10,000 had heart attacks when using Avandia, compared with 59 people per 10,000 in comparison groups. But after a series of statistical manipulations, Avandia appeared to confer an increased risk.
  • combining small studies in a meta-analysis is not a good substitute for a single trial sufficiently large to test a given question. “Meta-analyses can reduce the role of chance in the interpretation but may introduce bias and confounding,” Hennekens and DeMets write in the Dec. 2 Journal of the American Medical Association. “Such results should be considered more as hypothesis formulating than as hypothesis testing.”
  • Some studies show dramatic effects that don’t require sophisticated statistics to interpret. If the P value is 0.0001 — a hundredth of a percent chance of a fluke — that is strong evidence, Goodman points out. Besides, most well-accepted science is based not on any single study, but on studies that have been confirmed by repetition. Any one result may be likely to be wrong, but confidence rises quickly if that result is independently replicated.“Replication is vital,” says statistician Juliet Shaffer, a lecturer emeritus at the University of California, Berkeley. And in medicine, she says, the need for replication is widely recognized. “But in the social sciences and behavioral sciences, replication is not common,” she noted in San Diego in February at the annual meeting of the American Association for the Advancement of Science. “This is a sad situation.”
  • Most critics of standard statistics advocate the Bayesian approach to statistical reasoning, a methodology that derives from a theorem credited to Bayes, an 18th century English clergyman. His approach uses similar math, but requires the added twist of a “prior probability” — in essence, an informed guess about the expected probability of something in advance of the study. Often this prior probability is more than a mere guess — it could be based, for instance, on previous studies.
  • it basically just reflects the need to include previous knowledge when drawing conclusions from new observations. To infer the odds that a barking dog is hungry, for instance, it is not enough to know how often the dog barks when well-fed. You also need to know how often it eats — in order to calculate the prior probability of being hungry. Bayesian math combines a prior probability with observed data to produce an estimate of the likelihood of the hunger hypothesis. “A scientific hypothesis cannot be properly assessed solely by reference to the observational data,” but only by viewing the data in light of prior belief in the hypothesis, wrote George Diamond and Sanjay Kaul of UCLA’s School of Medicine in 2004 in the Journal of the American College of Cardiology. “Bayes’ theorem is ... a logically consistent, mathematically valid, and intuitive way to draw inferences about the hypothesis.” (See Box 4)
  • In many real-life contexts, Bayesian methods do produce the best answers to important questions. In medical diagnoses, for instance, the likelihood that a test for a disease is correct depends on the prevalence of the disease in the population, a factor that Bayesian math would take into account.
  • But Bayesian methods introduce a confusion into the actual meaning of the mathematical concept of “probability” in the real world. Standard or “frequentist” statistics treat probabilities as objective realities; Bayesians treat probabilities as “degrees of belief” based in part on a personal assessment or subjective decision about what to include in the calculation. That’s a tough placebo to swallow for scientists wedded to the “objective” ideal of standard statistics. “Subjective prior beliefs are anathema to the frequentist, who relies instead on a series of ad hoc algorithms that maintain the facade of scientific objectivity,” Diamond and Kaul wrote.Conflict between frequentists and Bayesians has been ongoing for two centuries. So science’s marriage to mathematics seems to entail some irreconcilable differences. Whether the future holds a fruitful reconciliation or an ugly separation may depend on forging a shared understanding of probability.“What does probability mean in real life?” the statistician David Salsburg asked in his 2001 book The Lady Tasting Tea. “This problem is still unsolved, and ... if it remains un­solved, the whole of the statistical approach to science may come crashing down from the weight of its own inconsistencies.”
  •  
    Odds Are, It's Wrong Science fails to face the shortcomings of statistics
Weiye Loh

Singapore does not have Third World Living Standards | the kent ridge common - 0 views

  • I apologise for this long overdue article to highlight the erroneous insinuations by my fellow KRC writer’s post, UBS: Singapore has Third World Living Standards.
  • The Satay Club post’s title was “UBS: Singapore has Russian Standard of Living”. The Original UBS report was even less suggestive, and in fact hardly made any value judgment at all. The original UBS report just presented a whole list of statistics, according to whichever esoteric mathematical calculation they used
  • As my JC economics teacher quipped, “If you abuse the statistics long enough, it will confess.” On one hand, UBS has not suggested that Singapore has third world living standards. On the other hand, I think it is justified to question how my KRC writer has managed to conclude from these statistics that Singapore has “Third World Living Standards”.
  • ...2 more annotations...
  • The terminology of “Third World” and “First World” are also problematic. The more “politically correct” terms used now are “developing” and “developed”. Whatever the charge, whatever your choice of terminology, Moscow and Tallinn are hardly “Third World” or “developing”. I have never been there myself, and unfortunately have no personal account to give, but a brief look at the countries listed below Singapore in the Wage Levels index- Beijing, Shanghai, Santiago de Chile, Buenos Aires, Delhi, Mexico City even – would make me cautious about abstracting from these statistics any indication at all about “living standards”.
  • The living “habits” and rhythms of life in all these various cities are as heterogeneous as these statistics are homogenizing, by placing them all on the same scale of measurement. This is not to say that we cannot have fruitful comparatives across societies – but that these statistics are not sufficient for such a venture. At the very least UBS’ mathematical methodology requires a greater analysis which was not provided in the previous KRC article. The burden of proof here is really on my fellow KRC writer to show that Singapore has Third World living standards, and the analysis that has been offered needs more to work.
Jody Poh

Australia's porn-blocking plan unveiled - 10 views

Elaine said: What are the standards put in place to determine whether something is of adult content? Who set those standards? Based on 'general' beliefs and what the government/"web police'' think ...

Weiye Loh

The Creativity Crisis - Newsweek - 0 views

  • The accepted definition of creativity is production of something original and useful, and that’s what’s reflected in the tests. There is never one right answer. To be creative requires divergent thinking (generating many unique ideas) and then convergent thinking (combining those ideas into the best result).
  • Torrance’s tasks, which have become the gold standard in creativity assessment, measure creativity perfectly. What’s shocking is how incredibly well Torrance’s creativity index predicted those kids’ creative accomplishments as adults.
  • The correlation to lifetime creative accomplishment was more than three times stronger for childhood creativity than childhood IQ.
  • ...20 more annotations...
  • there is one crucial difference between IQ and CQ scores. With intelligence, there is a phenomenon called the Flynn effect—each generation, scores go up about 10 points. Enriched environments are making kids smarter. With creativity, a reverse trend has just been identified and is being reported for the first time here: American creativity scores are falling.
  • creativity scores had been steadily rising, just like IQ scores, until 1990. Since then, creativity scores have consistently inched downward.
  • It is the scores of younger children in America—from kindergarten through sixth grade—for whom the decline is “most serious.”
  • It’s too early to determine conclusively why U.S. creativity scores are declining. One likely culprit is the number of hours kids now spend in front of the TV and playing videogames rather than engaging in creative activities. Another is the lack of creativity development in our schools. In effect, it’s left to the luck of the draw who becomes creative: there’s no concerted effort to nurture the creativity of all children.
  • Around the world, though, other countries are making creativity development a national priority.
  • In China there has been widespread education reform to extinguish the drill-and-kill teaching style. Instead, Chinese schools are also adopting a problem-based learning approach.
  • When faculty of a major Chinese university asked Plucker to identify trends in American education, he described our focus on standardized curriculum, rote memorization, and nationalized testing.
  • Overwhelmed by curriculum standards, American teachers warn there’s no room in the day for a creativity class.
  • The age-old belief that the arts have a special claim to creativity is unfounded. When scholars gave creativity tasks to both engineering majors and music majors, their scores laid down on an identical spectrum, with the same high averages and standard deviations.
  • The argument that we can’t teach creativity because kids already have too much to learn is a false trade-off. Creativity isn’t about freedom from concrete facts. Rather, fact-finding and deep research are vital stages in the creative process.
  • The lore of pop psychology is that creativity occurs on the right side of the brain. But we now know that if you tried to be creative using only the right side of your brain, it’d be like living with ideas perpetually at the tip of your tongue, just beyond reach.
  • Creativity requires constant shifting, blender pulses of both divergent thinking and convergent thinking, to combine new information with old and forgotten ideas. Highly creative people are very good at marshaling their brains into bilateral mode, and the more creative they are, the more they dual-activate.
  • “Creativity can be taught,” says James C. Kaufman, professor at California State University, San Bernardino. What’s common about successful programs is they alternate maximum divergent thinking with bouts of intense convergent thinking, through several stages. Real improvement doesn’t happen in a weekend workshop. But when applied to the everyday process of work or school, brain function improves.
  • highly creative adults tended to grow up in families embodying opposites. Parents encouraged uniqueness, yet provided stability. They were highly responsive to kids’ needs, yet challenged kids to develop skills. This resulted in a sort of adaptability: in times of anxiousness, clear rules could reduce chaos—yet when kids were bored, they could seek change, too. In the space between anxiety and boredom was where creativity flourished.
  • highly creative adults frequently grew up with hardship. Hardship by itself doesn’t lead to creativity, but it does force kids to become more flexible—and flexibility helps with creativity.
  • In early childhood, distinct types of free play are associated with high creativity. Preschoolers who spend more time in role-play (acting out characters) have higher measures of creativity: voicing someone else’s point of view helps develop their ability to analyze situations from different perspectives. When playing alone, highly creative first graders may act out strong negative emotions: they’ll be angry, hostile, anguished.
  • In middle childhood, kids sometimes create paracosms—fantasies of entire alternative worlds. Kids revisit their paracosms repeatedly, sometimes for months, and even create languages spoken there. This type of play peaks at age 9 or 10, and it’s a very strong sign of future creativity.
  • From fourth grade on, creativity no longer occurs in a vacuum; researching and studying become an integral part of coming up with useful solutions. But this transition isn’t easy. As school stuffs more complex information into their heads, kids get overloaded, and creativity suffers. When creative children have a supportive teacher—someone tolerant of unconventional answers, occasional disruptions, or detours of curiosity—they tend to excel. When they don’t, they tend to underperform and drop out of high school or don’t finish college at high rates.
  • They’re quitting because they’re discouraged and bored, not because they’re dark, depressed, anxious, or neurotic. It’s a myth that creative people have these traits. (Those traits actually shut down creativity; they make people less open to experience and less interested in novelty.) Rather, creative people, for the most part, exhibit active moods and positive affect. They’re not particularly happy—contentment is a kind of complacency creative people rarely have. But they’re engaged, motivated, and open to the world.
  • A similar study of 1,500 middle schoolers found that those high in creative self-efficacy had more confidence about their future and ability to succeed. They were sure that their ability to come up with alternatives would aid them, no matter what problems would arise.
  •  
    The Creativity Crisis For the first time, research shows that American creativity is declining. What went wrong-and how we can fix it.
juliet huang

Google applying double standards? - 6 views

We all know that Google revealed the blogger who called model Liskula Cohen a skank, and everyone in the web community was up in arms because it seems that Google has breached its duty to protect i...

started by juliet huang on 09 Sep 09 no follow-up yet
Weiye Loh

The Decline Effect and the Scientific Method : The New Yorker - 0 views

  • On September 18, 2007, a few dozen neuroscientists, psychiatrists, and drug-company executives gathered in a hotel conference room in Brussels to hear some startling news. It had to do with a class of drugs known as atypical or second-generation antipsychotics, which came on the market in the early nineties.
  • the therapeutic power of the drugs appeared to be steadily waning. A recent study showed an effect that was less than half of that documented in the first trials, in the early nineteen-nineties. Many researchers began to argue that the expensive pharmaceuticals weren’t any better than first-generation antipsychotics, which have been in use since the fifties. “In fact, sometimes they now look even worse,” John Davis, a professor of psychiatry at the University of Illinois at Chicago, told me.
  • Before the effectiveness of a drug can be confirmed, it must be tested and tested again. Different scientists in different labs need to repeat the protocols and publish their results. The test of replicability, as it’s known, is the foundation of modern research. Replicability is how the community enforces itself. It’s a safeguard for the creep of subjectivity. Most of the time, scientists know what results they want, and that can influence the results they get. The premise of replicability is that the scientific community can correct for these flaws.
  • ...30 more annotations...
  • But now all sorts of well-established, multiply confirmed findings have started to look increasingly uncertain. It’s as if our facts were losing their truth: claims that have been enshrined in textbooks are suddenly unprovable. This phenomenon doesn’t yet have an official name, but it’s occurring across a wide range of fields, from psychology to ecology. In the field of medicine, the phenomenon seems extremely widespread, affecting not only antipsychotics but also therapies ranging from cardiac stents to Vitamin E and antidepressants: Davis has a forthcoming analysis demonstrating that the efficacy of antidepressants has gone down as much as threefold in recent decades.
  • In private, Schooler began referring to the problem as “cosmic habituation,” by analogy to the decrease in response that occurs when individuals habituate to particular stimuli. “Habituation is why you don’t notice the stuff that’s always there,” Schooler says. “It’s an inevitable process of adjustment, a ratcheting down of excitement. I started joking that it was like the cosmos was habituating to my ideas. I took it very personally.”
  • At first, he assumed that he’d made an error in experimental design or a statistical miscalculation. But he couldn’t find anything wrong with his research. He then concluded that his initial batch of research subjects must have been unusually susceptible to verbal overshadowing. (John Davis, similarly, has speculated that part of the drop-off in the effectiveness of antipsychotics can be attributed to using subjects who suffer from milder forms of psychosis which are less likely to show dramatic improvement.) “It wasn’t a very satisfying explanation,” Schooler says. “One of my mentors told me that my real mistake was trying to replicate my work. He told me doing that was just setting myself up for disappointment.”
  • the effect is especially troubling because of what it exposes about the scientific process. If replication is what separates the rigor of science from the squishiness of pseudoscience, where do we put all these rigorously validated findings that can no longer be proved? Which results should we believe? Francis Bacon, the early-modern philosopher and pioneer of the scientific method, once declared that experiments were essential, because they allowed us to “put nature to the question.” But it appears that nature often gives us different answers.
  • The most likely explanation for the decline is an obvious one: regression to the mean. As the experiment is repeated, that is, an early statistical fluke gets cancelled out. The extrasensory powers of Schooler’s subjects didn’t decline—they were simply an illusion that vanished over time. And yet Schooler has noticed that many of the data sets that end up declining seem statistically solid—that is, they contain enough data that any regression to the mean shouldn’t be dramatic. “These are the results that pass all the tests,” he says. “The odds of them being random are typically quite remote, like one in a million. This means that the decline effect should almost never happen. But it happens all the time!
  • this is why Schooler believes that the decline effect deserves more attention: its ubiquity seems to violate the laws of statistics. “Whenever I start talking about this, scientists get very nervous,” he says. “But I still want to know what happened to my results. Like most scientists, I assumed that it would get easier to document my effect over time. I’d get better at doing the experiments, at zeroing in on the conditions that produce verbal overshadowing. So why did the opposite happen? I’m convinced that we can use the tools of science to figure this out. First, though, we have to admit that we’ve got a problem.”
  • In 2001, Michael Jennions, a biologist at the Australian National University, set out to analyze “temporal trends” across a wide range of subjects in ecology and evolutionary biology. He looked at hundreds of papers and forty-four meta-analyses (that is, statistical syntheses of related studies), and discovered a consistent decline effect over time, as many of the theories seemed to fade into irrelevance. In fact, even when numerous variables were controlled for—Jennions knew, for instance, that the same author might publish several critical papers, which could distort his analysis—there was still a significant decrease in the validity of the hypothesis, often within a year of publication. Jennions admits that his findings are troubling, but expresses a reluctance to talk about them publicly. “This is a very sensitive issue for scientists,” he says. “You know, we’re supposed to be dealing with hard facts, the stuff that’s supposed to stand the test of time. But when you see these trends you become a little more skeptical of things.”
  • the worst part was that when I submitted these null results I had difficulty getting them published. The journals only wanted confirming data. It was too exciting an idea to disprove, at least back then.
  • the steep rise and slow fall of fluctuating asymmetry is a clear example of a scientific paradigm, one of those intellectual fads that both guide and constrain research: after a new paradigm is proposed, the peer-review process is tilted toward positive results. But then, after a few years, the academic incentives shift—the paradigm has become entrenched—so that the most notable results are now those that disprove the theory.
  • Jennions, similarly, argues that the decline effect is largely a product of publication bias, or the tendency of scientists and scientific journals to prefer positive data over null results, which is what happens when no effect is found. The bias was first identified by the statistician Theodore Sterling, in 1959, after he noticed that ninety-seven per cent of all published psychological studies with statistically significant data found the effect they were looking for. A “significant” result is defined as any data point that would be produced by chance less than five per cent of the time. This ubiquitous test was invented in 1922 by the English mathematician Ronald Fisher, who picked five per cent as the boundary line, somewhat arbitrarily, because it made pencil and slide-rule calculations easier. Sterling saw that if ninety-seven per cent of psychology studies were proving their hypotheses, either psychologists were extraordinarily lucky or they published only the outcomes of successful experiments. In recent years, publication bias has mostly been seen as a problem for clinical trials, since pharmaceutical companies are less interested in publishing results that aren’t favorable. But it’s becoming increasingly clear that publication bias also produces major distortions in fields without large corporate incentives, such as psychology and ecology.
  • While publication bias almost certainly plays a role in the decline effect, it remains an incomplete explanation. For one thing, it fails to account for the initial prevalence of positive results among studies that never even get submitted to journals. It also fails to explain the experience of people like Schooler, who have been unable to replicate their initial data despite their best efforts
  • an equally significant issue is the selective reporting of results—the data that scientists choose to document in the first place. Palmer’s most convincing evidence relies on a statistical tool known as a funnel graph. When a large number of studies have been done on a single subject, the data should follow a pattern: studies with a large sample size should all cluster around a common value—the true result—whereas those with a smaller sample size should exhibit a random scattering, since they’re subject to greater sampling error. This pattern gives the graph its name, since the distribution resembles a funnel.
  • The funnel graph visually captures the distortions of selective reporting. For instance, after Palmer plotted every study of fluctuating asymmetry, he noticed that the distribution of results with smaller sample sizes wasn’t random at all but instead skewed heavily toward positive results.
  • Palmer has since documented a similar problem in several other contested subject areas. “Once I realized that selective reporting is everywhere in science, I got quite depressed,” Palmer told me. “As a researcher, you’re always aware that there might be some nonrandom patterns, but I had no idea how widespread it is.” In a recent review article, Palmer summarized the impact of selective reporting on his field: “We cannot escape the troubling conclusion that some—perhaps many—cherished generalities are at best exaggerated in their biological significance and at worst a collective illusion nurtured by strong a-priori beliefs often repeated.”
  • Palmer emphasizes that selective reporting is not the same as scientific fraud. Rather, the problem seems to be one of subtle omissions and unconscious misperceptions, as researchers struggle to make sense of their results. Stephen Jay Gould referred to this as the “shoehorning” process. “A lot of scientific measurement is really hard,” Simmons told me. “If you’re talking about fluctuating asymmetry, then it’s a matter of minuscule differences between the right and left sides of an animal. It’s millimetres of a tail feather. And so maybe a researcher knows that he’s measuring a good male”—an animal that has successfully mated—“and he knows that it’s supposed to be symmetrical. Well, that act of measurement is going to be vulnerable to all sorts of perception biases. That’s not a cynical statement. That’s just the way human beings work.”
  • One of the classic examples of selective reporting concerns the testing of acupuncture in different countries. While acupuncture is widely accepted as a medical treatment in various Asian countries, its use is much more contested in the West. These cultural differences have profoundly influenced the results of clinical trials. Between 1966 and 1995, there were forty-seven studies of acupuncture in China, Taiwan, and Japan, and every single trial concluded that acupuncture was an effective treatment. During the same period, there were ninety-four clinical trials of acupuncture in the United States, Sweden, and the U.K., and only fifty-six per cent of these studies found any therapeutic benefits. As Palmer notes, this wide discrepancy suggests that scientists find ways to confirm their preferred hypothesis, disregarding what they don’t want to see. Our beliefs are a form of blindness.
  • John Ioannidis, an epidemiologist at Stanford University, argues that such distortions are a serious issue in biomedical research. “These exaggerations are why the decline has become so common,” he says. “It’d be really great if the initial studies gave us an accurate summary of things. But they don’t. And so what happens is we waste a lot of money treating millions of patients and doing lots of follow-up studies on other themes based on results that are misleading.”
  • In 2005, Ioannidis published an article in the Journal of the American Medical Association that looked at the forty-nine most cited clinical-research studies in three major medical journals. Forty-five of these studies reported positive results, suggesting that the intervention being tested was effective. Because most of these studies were randomized controlled trials—the “gold standard” of medical evidence—they tended to have a significant impact on clinical practice, and led to the spread of treatments such as hormone replacement therapy for menopausal women and daily low-dose aspirin to prevent heart attacks and strokes. Nevertheless, the data Ioannidis found were disturbing: of the thirty-four claims that had been subject to replication, forty-one per cent had either been directly contradicted or had their effect sizes significantly downgraded.
  • The situation is even worse when a subject is fashionable. In recent years, for instance, there have been hundreds of studies on the various genes that control the differences in disease risk between men and women. These findings have included everything from the mutations responsible for the increased risk of schizophrenia to the genes underlying hypertension. Ioannidis and his colleagues looked at four hundred and thirty-two of these claims. They quickly discovered that the vast majority had serious flaws. But the most troubling fact emerged when he looked at the test of replication: out of four hundred and thirty-two claims, only a single one was consistently replicable. “This doesn’t mean that none of these claims will turn out to be true,” he says. “But, given that most of them were done badly, I wouldn’t hold my breath.”
  • the main problem is that too many researchers engage in what he calls “significance chasing,” or finding ways to interpret the data so that it passes the statistical test of significance—the ninety-five-per-cent boundary invented by Ronald Fisher. “The scientists are so eager to pass this magical test that they start playing around with the numbers, trying to find anything that seems worthy,” Ioannidis says. In recent years, Ioannidis has become increasingly blunt about the pervasiveness of the problem. One of his most cited papers has a deliberately provocative title: “Why Most Published Research Findings Are False.”
  • The problem of selective reporting is rooted in a fundamental cognitive flaw, which is that we like proving ourselves right and hate being wrong. “It feels good to validate a hypothesis,” Ioannidis said. “It feels even better when you’ve got a financial interest in the idea or your career depends upon it. And that’s why, even after a claim has been systematically disproven”—he cites, for instance, the early work on hormone replacement therapy, or claims involving various vitamins—“you still see some stubborn researchers citing the first few studies that show a strong effect. They really want to believe that it’s true.”
  • scientists need to become more rigorous about data collection before they publish. “We’re wasting too much time chasing after bad studies and underpowered experiments,” he says. The current “obsession” with replicability distracts from the real problem, which is faulty design. He notes that nobody even tries to replicate most science papers—there are simply too many. (According to Nature, a third of all studies never even get cited, let alone repeated.)
  • Schooler recommends the establishment of an open-source database, in which researchers are required to outline their planned investigations and document all their results. “I think this would provide a huge increase in access to scientific work and give us a much better way to judge the quality of an experiment,” Schooler says. “It would help us finally deal with all these issues that the decline effect is exposing.”
  • Although such reforms would mitigate the dangers of publication bias and selective reporting, they still wouldn’t erase the decline effect. This is largely because scientific research will always be shadowed by a force that can’t be curbed, only contained: sheer randomness. Although little research has been done on the experimental dangers of chance and happenstance, the research that exists isn’t encouraging
  • John Crabbe, a neuroscientist at the Oregon Health and Science University, conducted an experiment that showed how unknowable chance events can skew tests of replicability. He performed a series of experiments on mouse behavior in three different science labs: in Albany, New York; Edmonton, Alberta; and Portland, Oregon. Before he conducted the experiments, he tried to standardize every variable he could think of. The same strains of mice were used in each lab, shipped on the same day from the same supplier. The animals were raised in the same kind of enclosure, with the same brand of sawdust bedding. They had been exposed to the same amount of incandescent light, were living with the same number of littermates, and were fed the exact same type of chow pellets. When the mice were handled, it was with the same kind of surgical glove, and when they were tested it was on the same equipment, at the same time in the morning.
  • The premise of this test of replicability, of course, is that each of the labs should have generated the same pattern of results. “If any set of experiments should have passed the test, it should have been ours,” Crabbe says. “But that’s not the way it turned out.” In one experiment, Crabbe injected a particular strain of mouse with cocaine. In Portland the mice given the drug moved, on average, six hundred centimetres more than they normally did; in Albany they moved seven hundred and one additional centimetres. But in the Edmonton lab they moved more than five thousand additional centimetres. Similar deviations were observed in a test of anxiety. Furthermore, these inconsistencies didn’t follow any detectable pattern. In Portland one strain of mouse proved most anxious, while in Albany another strain won that distinction.
  • The disturbing implication of the Crabbe study is that a lot of extraordinary scientific data are nothing but noise. The hyperactivity of those coked-up Edmonton mice wasn’t an interesting new fact—it was a meaningless outlier, a by-product of invisible variables we don’t understand. The problem, of course, is that such dramatic findings are also the most likely to get published in prestigious journals, since the data are both statistically significant and entirely unexpected. Grants get written, follow-up studies are conducted. The end result is a scientific accident that can take years to unravel.
  • This suggests that the decline effect is actually a decline of illusion.
  • While Karl Popper imagined falsification occurring with a single, definitive experiment—Galileo refuted Aristotelian mechanics in an afternoon—the process turns out to be much messier than that. Many scientific theories continue to be considered true even after failing numerous experimental tests. Verbal overshadowing might exhibit the decline effect, but it remains extensively relied upon within the field. The same holds for any number of phenomena, from the disappearing benefits of second-generation antipsychotics to the weak coupling ratio exhibited by decaying neutrons, which appears to have fallen by more than ten standard deviations between 1969 and 2001. Even the law of gravity hasn’t always been perfect at predicting real-world phenomena. (In one test, physicists measuring gravity by means of deep boreholes in the Nevada desert found a two-and-a-half-per-cent discrepancy between the theoretical predictions and the actual data.) Despite these findings, second-generation antipsychotics are still widely prescribed, and our model of the neutron hasn’t changed. The law of gravity remains the same.
  • Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling. Not because it reveals the human fallibility of science, in which data are tweaked and beliefs shape perceptions. (Such shortcomings aren’t surprising, at least for scientists.) And not because it reveals that many of our most exciting theories are fleeting fads and will soon be rejected. (That idea has been around since Thomas Kuhn.) The decline effect is troubling because it reminds us how difficult it is to prove anything. We like to pretend that our experiments define the truth for us. But that’s often not the case. Just because an idea is true doesn’t mean it can be proved. And just because an idea can be proved doesn’t mean it’s true. When the experiments are done, we still have to choose what to believe.
Weiye Loh

Missing Micrograms Set a Standard on Edge - NYTimes.com - 0 views

  • No one knows exactly why the international prototype of the kilogram, as pampered a hunk of platinum and iridium as ever existed, appears to weigh less than it did when it was manufactured in the late 19th century.
  • It is here that the kilogram — the universal standard against which all other kilograms are measured — resides in controlled conditions set out in 1889, in an underground vault that can be opened only with three different keys possessed by three different people. The change, discovered when the prototype was compared with its official copies, amounts only to some 50 micrograms, equal to the mass of a smallish grain of sand. But it shows that the prototype has fallen down on its primary job, to be a beacon of stability in a world of uncertainty.
  • scientists say, that it is time to find a new way to calculate the kilogram, which currently enjoys a delightfully frustrating definition: “a unit of mass equal to the mass of the international prototype of the kilogram.”
  • ...1 more annotation...
  • The idea would be to base the future kilogram on a fundamental physical constant, not an inconstant object, said Dr. Peter J. Mohr, a theoretical physicist at the National Institute of Standards and Technology in Gaithersburg, Md. “We want to have something that’s not changing, so that we can have a stable system of measurement,” he said.
Weiye Loh

Jonathan Stray » Measuring and improving accuracy in journalism - 0 views

  • Accuracy is a hard thing to measure because it’s a hard thing to define. There are subjective and objective errors, and no standard way of determining whether a reported fact is true or false
  • The last big study of mainstream reporting accuracy found errors (defined below) in 59% of 4,800 stories across 14 metro newspapers. This level of inaccuracy — where about one in every two articles contains an error — has persisted for as long as news accuracy has been studied, over seven decades now.
  • With the explosion of available information, more than ever it’s time to get serious about accuracy, about knowing which sources can be trusted. Fortunately, there are emerging techniques that might help us to measure media accuracy cheaply, and then increase it.
  • ...7 more annotations...
  • We could continuously sample a news source’s output to produce ongoing accuracy estimates, and build social software to help the audience report and filter errors. Meticulously applied, this approach would give a measure of the accuracy of each information source, and a measure of the efficiency of their corrections process (currently only about 3% of all errors are corrected.)
  • Real world reporting isn’t always clearly “right” or “wrong,” so it will often be hard to decide whether something is an error or not. But we’re not going for ultimate Truth here,  just a general way of measuring some important aspect of the idea we call “accuracy.” In practice it’s important that the error counting method is simple, clear and repeatable, so that you can compare error rates of different times and sources.
  • Subjective errors, though by definition involving judgment, should not be dismissed as merely differences in opinion. Sources found such errors to be about as common as factual errors and often more egregious [as rated by the sources.] But subjective errors are a very complex category
  • One of the major problems with previous news accuracy metrics is the effort and time required to produce them. In short, existing accuracy measurement methods are expensive and slow. I’ve been wondering if we can do better, and a simple idea comes to mind: sampling. The core idea is this: news sources could take an ongoing random sample of their output and check it for accuracy — a fact check spot check
  • Standard statistical theory tells us what the error on that estimate will be for any given number of samples (If I’ve got this right, the relevant formula is standard error of a population proportion estimate without replacement.) At a sample rate of a few stories per day, daily estimates of error rate won’t be worth much. But weekly and monthly aggregates will start to produce useful accuracy estimates
  • the first step would be admitting how inaccurate journalism has historically been. Then we have to come up with standardized accuracy evaluation procedures, in pursuit of metrics that capture enough of what we mean by “true” to be worth optimizing. Meanwhile, we can ramp up the efficiency of our online corrections processes until we find as many useful, legitimate errors as possible with as little staff time as possible. It might also be possible do data mining on types of errors and types of stories to figure out if there are patterns in how an organization fails to get facts right.
  • I’d love to live in a world where I could compare the accuracy of information sources, where errors got found and fixed with crowd-sourced ease, and where news organizations weren’t shy about telling me what they did and did not know. Basic factual accuracy is far from the only measure of good journalism, but perhaps it’s an improvement over the current sad state of affairs
  •  
    Professional journalism is supposed to be "factual," "accurate," or just plain true. Is it? Has news accuracy been getting better or worse in the last decade? How does it vary between news organizations, and how do other information sources rate? Is professional journalism more or less accurate than everything else on the internet? These all seem like important questions, so I've been poking around, trying to figure out what we know and don't know about the accuracy of our news sources. Meanwhile, the online news corrections process continues to evolve, which gives us hope that the news will become more accurate in the future.
Weiye Loh

Meet the Ethical Placebo: A Story that Heals | NeuroTribes - 0 views

  • In modern medicine, placebos are associated with another form of deception — a kind that has long been thought essential for conducting randomized clinical trials of new drugs, the statistical rock upon which the global pharmaceutical industry was built. One group of volunteers in an RCT gets the novel medication; another group (the “control” group) gets pills or capsules that look identical to the allegedly active drug, but contain only an inert substance like milk sugar. These faux drugs are called placebos.
  • Inevitably, the health of some people in both groups improves, while the health of others grows worse. Symptoms of illness fluctuate for all sorts of reasons, including regression to the mean.
  • Since the goal of an RCT, from Big Pharma’s perspective, is to demonstrate the effectiveness of a new drug, the return to robust health of a volunteer in the control group is considered a statistical distraction. If too many people in the trial get better after downing sugar pills, the real drug will look worse by comparison — sometimes fatally so for the purpose of earning approval from the Food and Drug Adminstration.
  • ...12 more annotations...
  • For a complex and somewhat mysterious set of reasons, it is becoming increasingly difficult for experimental drugs to prove their superiority to sugar pills in RCTs
  • in recent years, however, has it become obvious that the abatement of symptoms in control-group volunteers — the so-called placebo effect — is worthy of study outside the context of drug trials, and is in fact profoundly good news to anyone but investors in Pfizer, Roche, and GlaxoSmithKline.
  • The emerging field of placebo research has revealed that the body’s repertoire of resilience contains a powerful self-healing network that can help reduce pain and inflammation, lower the production of stress chemicals like cortisol, and even tame high blood pressure and the tremors of Parkinson’s disease.
  • more and more studies each year — by researchers like Fabrizio Benedetti at the University of Turin, author of a superb new book called The Patient’s Brain, and neuroscientist Tor Wager at the University of Colorado — demonstrate that the placebo effect might be potentially useful in treating a wide range of ills. Then why aren’t doctors supposed to use it?
  • The medical establishment’s ethical problem with placebo treatment boils down to the notion that for fake drugs to be effective, doctors must lie to their patients. It has been widely assumed that if a patient discovers that he or she is taking a placebo, the mind/body password will no longer unlock the network, and the magic pills will cease to do their job.
  • For “Placebos Without Deception,” the researchers tracked the health of 80 volunteers with irritable bowel syndrome for three weeks as half of them took placebos and the other half didn’t.
  • In a previous study published in the British Medical Journal in 2008, Kaptchuk and Kirsch demonstrated that placebo treatment can be highly effective for alleviating the symptoms of IBS. This time, however, instead of the trial being “blinded,” it was “open.” That is, the volunteers in the placebo group knew that they were getting only inert pills — which they were instructed to take religiously, twice a day. They were also informed that, just as Ivan Pavlov trained his dogs to drool at the sound of a bell, the body could be trained to activate its own built-in healing network by the act of swallowing a pill.
  • In other words, in addition to the bogus medication, the volunteers were given a true story — the story of the placebo effect. They also received the care and attention of clinicians, which have been found in many other studies to be crucial for eliciting placebo effects. The combination of the story and a supportive clinical environment were enough to prevail over the knowledge that there was really nothing in the pills. People in the placebo arm of the trial got better — clinically, measurably, significantly better — on standard scales of symptom severity and overall quality of life. In fact, the volunteers in the placebo group experienced improvement comparable to patients taking a drug called alosetron, the standard of care for IBS. Meet the ethical placebo: a powerfully effective faux medication that meets all the standards of informed consent.
  • The study is hardly the last word on the subject, but more like one of the first. Its modest sample size and brief duration leave plenty of room for followup research. (What if “ethical” placebos wear off more quickly than deceptive ones? Does the fact that most of the volunteers in this study were women have any bearing on the outcome? Were any of the volunteers skeptical that the placebo effect is real, and did that affect their response to treatment?) Before some eager editor out there composes a tweet-baiting headline suggesting that placebos are about to drive Big Pharma out of business, he or she should appreciate the fact that the advent of AMA-approved placebo treatments would open numerous cans of fascinatingly tangled worms. For example, since the precise nature of placebo effects is shaped largely by patients’ expectations, would the advertised potency and side effects of theoretical products like Placebex and Therastim be subject to change by Internet rumors, requiring perpetual updating?
  • It’s common to use the word “placebo” as a synonym for “scam.” Economists talk about placebo solutions to our economic catastrophe (tax cuts for the rich, anyone?). Online skeptics mock the billion-dollar herbal-medicine industry by calling it Big Placebo. The fact that our brains and bodies respond vigorously to placebos given in warm and supportive clinical environments, however, turns out to be very real.
  • We’re also discovering that the power of narrative is embedded deeply in our physiology.
  • in the real world of doctoring, many physicians prescribe medications at dosages too low to have an effect on their own, hoping to tap into the body’s own healing resources — though this is mostly acknowledged only in whispers, as a kind of trade secret.
Weiye Loh

Rationally Speaking: The problem of replicability in science - 0 views

  • The problem of replicability in science from xkcdby Massimo Pigliucci
  • In recent months much has been written about the apparent fact that a surprising, indeed disturbing, number of scientific findings cannot be replicated, or when replicated the effect size turns out to be much smaller than previously thought.
  • Arguably, the recent streak of articles on this topic began with one penned by David Freedman in The Atlantic, and provocatively entitled “Lies, Damned Lies, and Medical Science.” In it, the major character was John Ioannidis, the author of some influential meta-studies about the low degree of replicability and high number of technical flaws in a significant portion of published papers in the biomedical literature.
  • ...18 more annotations...
  • As Freedman put it in The Atlantic: “80 percent of non-randomized studies (by far the most common type) turn out to be wrong, as do 25 percent of supposedly gold-standard randomized trials, and as much as 10 percent of the platinum-standard large randomized trials.” Ioannidis himself was quoted uttering some sobering words for the medical community (and the public at large): “Science is a noble endeavor, but it’s also a low-yield endeavor. I’m not sure that more than a very small percentage of medical research is ever likely to lead to major improvements in clinical outcomes and quality of life. We should be very comfortable with that fact.”
  • Julia and I actually addressed this topic during a Rationally Speaking podcast, featuring as guest our friend Steve Novella, of Skeptics’ Guide to the Universe and Science-Based Medicine fame. But while Steve did quibble with the tone of the Atlantic article, he agreed that Ioannidis’ results are well known and accepted by the medical research community. Steve did point out that it should not be surprising that results get better and better as one moves toward more stringent protocols like large randomized trials, but it seems to me that one should be surprised (actually, appalled) by the fact that even there the percentage of flawed studies is high — not to mention the fact that most studies are in fact neither large nor properly randomized.
  • The second big recent blow to public perception of the reliability of scientific results is an article published in The New Yorker by Jonah Lehrer, entitled “The truth wears off.” Lehrer also mentions Ioannidis, but the bulk of his essay is about findings in psychiatry, psychology and evolutionary biology (and even in research on the paranormal!).
  • In these disciplines there are now several documented cases of results that were initially spectacularly positive — for instance the effects of second generation antipsychotic drugs, or the hypothesized relationship between a male’s body symmetry and the quality of his genes — that turned out to be increasingly difficult to replicate over time, with the original effect sizes being cut down dramatically, or even disappearing altogether.
  • As Lehrer concludes at the end of his article: “Such anomalies demonstrate the slipperiness of empiricism. Although many scientific ideas generate conflicting results and suffer from falling effect sizes, they continue to get cited in the textbooks and drive standard medical practice. Why? Because these ideas seem true. Because they make sense. Because we can’t bear to let them go. And this is why the decline effect is so troubling.”
  • None of this should actually be particularly surprising to any practicing scientist. If you have spent a significant time of your life in labs and reading the technical literature, you will appreciate the difficulties posed by empirical research, not to mention a number of issues such as the fact that few scientists ever actually bother to replicate someone else’s results, for the simple reason that there is no Nobel (or even funded grant, or tenured position) waiting for the guy who arrived second.
  • n the midst of this I was directed by a tweet by my colleague Neil deGrasse Tyson (who has also appeared on the RS podcast, though in a different context) to a recent ABC News article penned by John Allen Paulos, which meant to explain the decline effect in science.
  • Paulos’ article is indeed concise and on the mark (though several of the explanations he proposes were already brought up in both the Atlantic and New Yorker essays), but it doesn’t really make things much better.
  • Paulos suggests that one explanation for the decline effect is the well known statistical phenomenon of the regression toward the mean. This phenomenon is responsible, among other things, for a fair number of superstitions: you’ve probably heard of some athletes’ and other celebrities’ fear of being featured on the cover of a magazine after a particularly impressive series of accomplishments, because this brings “bad luck,” meaning that the following year one will not be able to repeat the performance at the same level. This is actually true, not because of magical reasons, but simply as a result of the regression to the mean: extraordinary performances are the result of a large number of factors that have to line up just right for the spectacular result to be achieved. The statistical chances of such an alignment to repeat itself are low, so inevitably next year’s performance will likely be below par. Paulos correctly argues that this also explains some of the decline effect of scientific results: the first discovery might have been the result of a number of factors that are unlikely to repeat themselves in exactly the same way, thus reducing the effect size when the study is replicated.
  • nother major determinant of the unreliability of scientific results mentioned by Paulos is the well know problem of publication bias: crudely put, science journals (particularly the high-profile ones, like Nature and Science) are interested only in positive, spectacular, “sexy” results. Which creates a powerful filter against negative, or marginally significant results. What you see in science journals, in other words, isn’t a statistically representative sample of scientific results, but a highly biased one, in favor of positive outcomes. No wonder that when people try to repeat the feat they often come up empty handed.
  • A third cause for the problem, not mentioned by Paulos but addressed in the New Yorker article, is the selective reporting of results by scientists themselves. This is essentially the same phenomenon as the publication bias, except that this time it is scientists themselves, not editors and reviewers, who don’t bother to submit for publication results that are either negative or not strongly conclusive. Again, the outcome is that what we see in the literature isn’t all the science that we ought to see. And it’s no good to argue that it is the “best” science, because the quality of scientific research is measured by the appropriateness of the experimental protocols (including the use of large samples) and of the data analyses — not by whether the results happen to confirm the scientist’s favorite theory.
  • The conclusion of all this is not, of course, that we should throw the baby (science) out with the bath water (bad or unreliable results). But scientists should also be under no illusion that these are rare anomalies that do not affect scientific research at large. Too much emphasis is being put on the “publish or perish” culture of modern academia, with the result that graduate students are explicitly instructed to go for the SPU’s — Smallest Publishable Units — when they have to decide how much of their work to submit to a journal. That way they maximize the number of their publications, which maximizes the chances of landing a postdoc position, and then a tenure track one, and then of getting grants funded, and finally of getting tenure. The result is that, according to statistics published by Nature, it turns out that about ⅓ of published studies is never cited (not to mention replicated!).
  • “Scientists these days tend to keep up the polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist’s field and methods of study are as good as every other scientist’s, and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants. ... We speak piously of taking measurements and making small studies that will ‘add another brick to the temple of science.’ Most such bricks lie around the brickyard.”
    • Weiye Loh
       
      Written by John Platt in a "Science" article published in 1964
  • Most damning of all, however, is the potential effect that all of this may have on science’s already dubious reputation with the general public (think evolution-creation, vaccine-autism, or climate change)
  • “If we don’t tell the public about these problems, then we’re no better than non-scientists who falsely claim they can heal. If the drugs don’t work and we’re not sure how to treat something, why should we claim differently? Some fear that there may be less funding because we stop claiming we can prove we have miraculous treatments. But if we can’t really provide those miracles, how long will we be able to fool the public anyway? The scientific enterprise is probably the most fantastic achievement in human history, but that doesn’t mean we have a right to overstate what we’re accomplishing.”
  • Joseph T. Lapp said... But is any of this new for science? Perhaps science has operated this way all along, full of fits and starts, mostly duds. How do we know that this isn't the optimal way for science to operate?My issues are with the understanding of science that high school graduates have, and with the reporting of science.
    • Weiye Loh
       
      It's the media at fault again.
  • What seems to have emerged in recent decades is a change in the institutional setting that got science advancing spectacularly since the establishment of the Royal Society. Flaws in the system such as corporate funded research, pal-review instead of peer-review, publication bias, science entangled with policy advocacy, and suchlike, may be distorting the environment, making it less suitable for the production of good science, especially in some fields.
  • Remedies should exist, but they should evolve rather than being imposed on a reluctant sociological-economic science establishment driven by powerful motives such as professional advance or funding. After all, who or what would have the authority to impose those rules, other than the scientific establishment itself?
Weiye Loh

Anonymous speaks: the inside story of the HBGary hack - 0 views

  • The attackers just needed a little bit more information: they needed a regular, non-root user account to log in with, because as a standard security procedure, direct ssh access with the root account is disabled. Armed with the two pieces of knowledge above, and with Greg's e-mail account in their control, the social engineers set about their task. The e-mail correspondence tells the whole story: From: Greg To: Jussi Subject: need to ssh into rootkit im in europe and need to ssh into the server. can you drop open up firewall and allow ssh through port 59022 or something vague? and is our root password still 88j4bb3rw0cky88 or did we change to 88Scr3am3r88 ? thanks
  • Thanks indeed. To be fair to Jussi, the fake Greg appeared to know the root password and, well, the e-mails were coming from Greg's own e-mail address. But over the course of a few e-mails it was clear that "Greg" had forgotten both his username and his password. And Jussi handed them to him on a platter. Later on, Jussi did appear to notice something was up: From: Jussi To: Greg Subject: Re: need to ssh into rootkit did you open something running on high port?
  • From: Jussi To: Greg Subject: Re: need to ssh into rootkit hi, do you have public ip? or should i just drop fw? and it is w0cky - tho no remote root access allowed
  • ...2 more annotations...
  • So there are clearly two lessons to be learned here. The first is that the standard advice is good advice. If all best practices had been followed then none of this would have happened. Even if the SQL injection error was still present, it wouldn't have caused the cascade of failures that followed.
  • The second lesson, however, is that the standard advice isn't good enough. Even recognized security experts who should know better won't follow it. What hope does that leave for the rest of us?
Weiye Loh

Science, Strong Inference -- Proper Scientific Method - 0 views

  • Scientists these days tend to keep up a polite fiction that all science is equal. Except for the work of the misguided opponent whose arguments we happen to be refuting at the time, we speak as though every scientist's field and methods of study are as good as every other scientist's and perhaps a little better. This keeps us all cordial when it comes to recommending each other for government grants.
  • Why should there be such rapid advances in some fields and not in others? I think the usual explanations that we tend to think of - such as the tractability of the subject, or the quality or education of the men drawn into it, or the size of research contracts - are important but inadequate. I have begun to believe that the primary factor in scientific advance is an intellectual one. These rapidly moving fields are fields where a particular method of doing scientific research is systematically used and taught, an accumulative method of inductive inference that is so effective that I think it should be given the name of "strong inference." I believe it is important to examine this method, its use and history and rationale, and to see whether other groups and individuals might learn to adopt it profitably in their own scientific and intellectual work. In its separate elements, strong inference is just the simple and old-fashioned method of inductive inference that goes back to Francis Bacon. The steps are familiar to every college student and are practiced, off and on, by every scientist. The difference comes in their systematic application. Strong inference consists of applying the following steps to every problem in science, formally and explicitly and regularly: Devising alternative hypotheses; Devising a crucial experiment (or several of them), with alternative possible outcomes, each of which will, as nearly is possible, exclude one or more of the hypotheses; Carrying out the experiment so as to get a clean result; Recycling the procedure, making subhypotheses or sequential hypotheses to refine the possibilities that remain, and so on.
  • On any new problem, of course, inductive inference is not as simple and certain as deduction, because it involves reaching out into the unknown. Steps 1 and 2 require intellectual inventions, which must be cleverly chosen so that hypothesis, experiment, outcome, and exclusion will be related in a rigorous syllogism; and the question of how to generate such inventions is one which has been extensively discussed elsewhere (2, 3). What the formal schema reminds us to do is to try to make these inventions, to take the next step, to proceed to the next fork, without dawdling or getting tied up in irrelevancies.
  • ...28 more annotations...
  • It is clear why this makes for rapid and powerful progress. For exploring the unknown, there is no faster method; this is the minimum sequence of steps. Any conclusion that is not an exclusion is insecure and must be rechecked. Any delay in recycling to the next set of hypotheses is only a delay. Strong inference, and the logical tree it generates, are to inductive reasoning what the syllogism is to deductive reasoning in that it offers a regular method for reaching firm inductive conclusions one after the other as rapidly as possible.
  • "But what is so novel about this?" someone will say. This is the method of science and always has been, why give it a special name? The reason is that many of us have almost forgotten it. Science is now an everyday business. Equipment, calculations, lectures become ends in themselves. How many of us write down our alternatives and crucial experiments every day, focusing on the exclusion of a hypothesis? We may write our scientific papers so that it looks as if we had steps 1, 2, and 3 in mind all along. But in between, we do busywork. We become "method- oriented" rather than "problem-oriented." We say we prefer to "feel our way" toward generalizations. We fail to teach our students how to sharpen up their inductive inferences. And we do not realize the added power that the regular and explicit use of alternative hypothesis and sharp exclusion could give us at every step of our research.
  • A distinguished cell biologist rose and said, "No two cells give the same properties. Biology is the science of heterogeneous systems." And he added privately. "You know there are scientists, and there are people in science who are just working with these over-simplified model systems - DNA chains and in vitro systems - who are not doing science at all. We need their auxiliary work: they build apparatus, they make minor studies, but they are not scientists." To which Cy Levinthal replied: "Well, there are two kinds of biologists, those who are looking to see if there is one thing that can be understood and those who keep saying it is very complicated and that nothing can be understood. . . . You must study the simplest system you think has the properties you are interested in."
  • At the 1958 Conference on Biophysics, at Boulder, there was a dramatic confrontation between the two points of view. Leo Szilard said: "The problems of how enzymes are induced, of how proteins are synthesized, of how antibodies are formed, are closer to solution than is generally believed. If you do stupid experiments, and finish one a year, it can take 50 years. But if you stop doing experiments for a little while and think how proteins can possibly be synthesized, there are only about 5 different ways, not 50! And it will take only a few experiments to distinguish these." One of the young men added: "It is essentially the old question: How small and elegant an experiment can you perform?" These comments upset a number of those present. An electron microscopist said. "Gentlemen, this is off the track. This is philosophy of science." Szilard retorted. "I was not quarreling with third-rate scientists: I was quarreling with first-rate scientists."
  • Any criticism or challenge to consider changing our methods strikes of course at all our ego-defenses. But in this case the analytical method offers the possibility of such great increases in effectiveness that it is unfortunate that it cannot be regarded more often as a challenge to learning rather than as challenge to combat. Many of the recent triumphs in molecular biology have in fact been achieved on just such "oversimplified model systems," very much along the analytical lines laid down in the 1958 discussion. They have not fallen to the kind of men who justify themselves by saying "No two cells are alike," regardless of how true that may ultimately be. The triumphs are in fact triumphs of a new way of thinking.
  • the emphasis on strong inference
  • is also partly due to the nature of the fields themselves. Biology, with its vast informational detail and complexity, is a "high-information" field, where years and decades can easily be wasted on the usual type of "low-information" observations or experiments if one does not think carefully in advance about what the most important and conclusive experiments would be. And in high-energy physics, both the "information flux" of particles from the new accelerators and the million-dollar costs of operation have forced a similar analytical approach. It pays to have a top-notch group debate every experiment ahead of time; and the habit spreads throughout the field.
  • Historically, I think, there have been two main contributions to the development of a satisfactory strong-inference method. The first is that of Francis Bacon (13). He wanted a "surer method" of "finding out nature" than either the logic-chopping or all-inclusive theories of the time or the laudable but crude attempts to make inductions "by simple enumeration." He did not merely urge experiments as some suppose, he showed the fruitfulness of interconnecting theory and experiment so that the one checked the other. Of the many inductive procedures he suggested, the most important, I think, was the conditional inductive tree, which proceeded from alternative hypothesis (possible "causes," as he calls them), through crucial experiments ("Instances of the Fingerpost"), to exclusion of some alternatives and adoption of what is left ("establishing axioms"). His Instances of the Fingerpost are explicitly at the forks in the logical tree, the term being borrowed "from the fingerposts which are set up where roads part, to indicate the several directions."
  • ere was a method that could separate off the empty theories! Bacon, said the inductive method could be learned by anybody, just like learning to "draw a straighter line or more perfect circle . . . with the help of a ruler or a pair of compasses." "My way of discovering sciences goes far to level men's wit and leaves but little to individual excellence, because it performs everything by the surest rules and demonstrations." Even occasional mistakes would not be fatal. "Truth will sooner come out from error than from confusion."
  • Nevertheless there is a difficulty with this method. As Bacon emphasizes, it is necessary to make "exclusions." He says, "The induction which is to be available for the discovery and demonstration of sciences and arts, must analyze nature by proper rejections and exclusions, and then, after a sufficient number of negatives come to a conclusion on the affirmative instances." "[To man] it is granted only to proceed at first by negatives, and at last to end in affirmatives after exclusion has been exhausted." Or, as the philosopher Karl Popper says today there is no such thing as proof in science - because some later alternative explanation may be as good or better - so that science advances only by disproofs. There is no point in making hypotheses that are not falsifiable because such hypotheses do not say anything, "it must be possible for all empirical scientific system to be refuted by experience" (14).
  • The difficulty is that disproof is a hard doctrine. If you have a hypothesis and I have another hypothesis, evidently one of them must be eliminated. The scientist seems to have no choice but to be either soft-headed or disputatious. Perhaps this is why so many tend to resist the strong analytical approach and why some great scientists are so disputatious.
  • Fortunately, it seems to me, this difficulty can be removed by the use of a second great intellectual invention, the "method of multiple hypotheses," which is what was needed to round out the Baconian scheme. This is a method that was put forward by T.C. Chamberlin (15), a geologist at Chicago at the turn of the century, who is best known for his contribution to the Chamberlain-Moulton hypothesis of the origin of the solar system.
  • Chamberlin says our trouble is that when we make a single hypothesis, we become attached to it. "The moment one has offered an original explanation for a phenomenon which seems satisfactory, that moment affection for his intellectual child springs into existence, and as the explanation grows into a definite theory his parental affections cluster about his offspring and it grows more and more dear to him. . . . There springs up also unwittingly a pressing of the theory to make it fit the facts and a pressing of the facts to make them fit the theory..." "To avoid this grave danger, the method of multiple working hypotheses is urged. It differs from the simple working hypothesis in that it distributes the effort and divides the affections. . . . Each hypothesis suggests its own criteria, its own method of proof, its own method of developing the truth, and if a group of hypotheses encompass the subject on all sides, the total outcome of means and of methods is full and rich."
  • The conflict and exclusion of alternatives that is necessary to sharp inductive inference has been all too often a conflict between men, each with his single Ruling Theory. But whenever each man begins to have multiple working hypotheses, it becomes purely a conflict between ideas. It becomes much easier then for each of us to aim every day at conclusive disproofs - at strong inference - without either reluctance or combativeness. In fact, when there are multiple hypotheses, which are not anyone's "personal property," and when there are crucial experiments to test them, the daily life in the laboratory takes on an interest and excitement it never had, and the students can hardly wait to get to work to see how the detective story will come out. It seems to me that this is the reason for the development of those distinctive habits of mind and the "complex thought" that Chamberlin described, the reason for the sharpness, the excitement, the zeal, the teamwork - yes, even international teamwork - in molecular biology and high- energy physics today. What else could be so effective?
  • Unfortunately, I think, there are other other areas of science today that are sick by comparison, because they have forgotten the necessity for alternative hypotheses and disproof. Each man has only one branch - or none - on the logical tree, and it twists at random without ever coming to the need for a crucial decision at any point. We can see from the external symptoms that there is something scientifically wrong. The Frozen Method, The Eternal Surveyor, The Never Finished, The Great Man With a Single Hypothcsis, The Little Club of Dependents, The Vendetta, The All-Encompassing Theory Which Can Never Be Falsified.
  • a "theory" of this sort is not a theory at all, because it does not exclude anything. It predicts everything, and therefore does not predict anything. It becomes simply a verbal formula which the graduate student repeats and believes because the professor has said it so often. This is not science, but faith; not theory, but theology. Whether it is hand-waving or number-waving, or equation-waving, a theory is not a theory unless it can be disproved. That is, unless it can be falsified by some possible experimental outcome.
  • the work methods of a number of scientists have been testimony to the power of strong inference. Is success not due in many cases to systematic use of Bacon's "surest rules and demonstrations" as much as to rare and unattainable intellectual power? Faraday's famous diary (16), or Fermi's notebooks (3, 17), show how these men believed in the effectiveness of daily steps in applying formal inductive methods to one problem after another.
  • Surveys, taxonomy, design of equipment, systematic measurements and tables, theoretical computations - all have their proper and honored place, provided they are parts of a chain of precise induction of how nature works. Unfortunately, all too often they become ends in themselves, mere time-serving from the point of view of real scientific advance, a hypertrophied methodology that justifies itself as a lore of respectability.
  • We speak piously of taking measurements and making small studies that will "add another brick to the temple of science." Most such bricks just lie around the brickyard (20). Tables of constraints have their place and value, but the study of one spectrum after another, if not frequently re-evaluated, may become a substitute for thinking, a sad waste of intelligence in a research laboratory, and a mistraining whose crippling effects may last a lifetime.
  • Beware of the man of one method or one instrument, either experimental or theoretical. He tends to become method-oriented rather than problem-oriented. The method-oriented man is shackled; the problem-oriented man is at least reaching freely toward that is most important. Strong inference redirects a man to problem-orientation, but it requires him to be willing repeatedly to put aside his last methods and teach himself new ones.
  • anyone who asks the question about scientific effectiveness will also conclude that much of the mathematizing in physics and chemistry today is irrelevant if not misleading. The great value of mathematical formulation is that when an experiment agrees with a calculation to five decimal places, a great many alternative hypotheses are pretty well excluded (though the Bohr theory and the Schrödinger theory both predict exactly the same Rydberg constant!). But when the fit is only to two decimal places, or one, it may be a trap for the unwary; it may be no better than any rule-of-thumb extrapolation, and some other kind of qualitative exclusion might be more rigorous for testing the assumptions and more important to scientific understanding than the quantitative fit.
  • Today we preach that science is not science unless it is quantitative. We substitute correlations for causal studies, and physical equations for organic reasoning. Measurements and equations are supposed to sharpen thinking, but, in my observation, they more often tend to make the thinking noncausal and fuzzy. They tend to become the object of scientific manipulation instead of auxiliary tests of crucial inferences.
  • Many - perhaps most - of the great issues of science are qualitative, not quantitative, even in physics and chemistry. Equations and measurements are useful when and only when they are related to proof; but proof or disproof comes first and is in fact strongest when it is absolutely convincing without any quantitative measurement.
  • you can catch phenomena in a logical box or in a mathematical box. The logical box is coarse but strong. The mathematical box is fine-grained but flimsy. The mathematical box is a beautiful way of wrapping up a problem, but it will not hold the phenomena unless they have been caught in a logical box to begin with.
  • Of course it is easy - and all too common - for one scientist to call the others unscientific. My point is not that my particular conclusions here are necessarily correct, but that we have long needed some absolute standard of possible scientific effectiveness by which to measure how well we are succeeding in various areas - a standard that many could agree on and one that would be undistorted by the scientific pressures and fashions of the times and the vested interests and busywork that they develop. It is not public evaluation I am interested in so much as a private measure by which to compare one's own scientific performance with what it might be. I believe that strong inference provides this kind of standard of what the maximum possible scientific effectiveness could be - as well as a recipe for reaching it.
  • The strong-inference point of view is so resolutely critical of methods of work and values in science that any attempt to compare specific cases is likely to sound but smug and destructive. Mainly one should try to teach it by example and by exhorting to self-analysis and self-improvement only in general terms
  • one severe but useful private test - a touchstone of strong inference - that removes the necessity for third-person criticism, because it is a test that anyone can learn to carry with him for use as needed. It is our old friend the Baconian "exclusion," but I call it "The Question." Obviously it should be applied as much to one's own thinking as to others'. It consists of asking in your own mind, on hearing any scientific explanation or theory put forward, "But sir, what experiment could disprove your hypothesis?"; or, on hearing a scientific experiment described, "But sir, what hypothesis does your experiment disprove?"
  • It is not true that all science is equal; or that we cannot justly compare the effectiveness of scientists by any method other than a mutual-recommendation system. The man to watch, the man to put your money on, is not the man who wants to make "a survey" or a "more detailed study" but the man with the notebook, the man with the alternative hypotheses and the crucial experiments, the man who knows how to answer your Question of disproof and is already working on it.
  •  
    There is so much bad science and bad statistics information in media reports, publications, and shared between conversants that I think it is important to understand about facts and proofs and the associated pitfalls.
Weiye Loh

Roger Pielke Jr.'s Blog: Faith-Based Education and a Return to Shop Class - 0 views

  • In the United States, nearly a half century of research, application of new technologies and development of new methods and policies has failed to translate into improved reading abilities for the nation’s children1.
  • the reasons why progress has been so uneven point to three simple rules for anticipating when more research and development (R&D) could help to yield rapid social progress. In a world of limited resources, the trick is distinguishing problems amenable to technological fixes from those that are not. Our rules provide guidance\ in making this distinction . . .
  • unlike vaccines, the textbooks and software used in education do not embody the essence of what needs to be done. That is, they don’t provide the basic ‘go’ of teaching and learning. That depends on the skills of teachers and on the attributes of classrooms and students. Most importantly, the effectiveness of a vaccine is largely independent of who gives or receives it, and of the setting in which it is given.
  • ...5 more annotations...
  • The three rules for a technological fix proposed by Sarewitz and Nelson are: I. The technology must largely embody the cause–effect relationship connecting problem to solution. II. The effects of the technological fix must be assessable using relatively unambiguous or uncontroversial criteria. III. Research and development is most likely to contribute decisively to solving a social problem when it focuses on improving a standardized technical core that already exists.
  • technology in the classroom fails with respect to each of the three criteria: (a) technology is not a causal factor in learning in the sense that more technology means more learning, (b) assessment of educational outcome sis itself difficult and contested, much less disentangling various causal factors, and (c) the lack of evidence that technology leads to improved educational outcomes means that there is no such standardized technological core.
  • This conundrum calls into question one of the most significant contemporary educational movements. Advocates for giving schools a major technological upgrade — which include powerful educators, Silicon Valley titans and White House appointees — say digital devices let students learn at their own pace, teach skills needed in a modern economy and hold the attention of a generation weaned on gadgets. Some backers of this idea say standardized tests, the most widely used measure of student performance, don’t capture the breadth of skills that computers can help develop. But they also concede that for now there is no better way to gauge the educational value of expensive technology investments.
  • absent clear proof, schools are being motivated by a blind faith in technology and an overemphasis on digital skills — like using PowerPoint and multimedia tools — at the expense of math, reading and writing fundamentals. They say the technology advocates have it backward when they press to upgrade first and ask questions later.
  • [D]emand for educated labour is being reconfigured by technology, in much the same way that the demand for agricultural labour was reconfigured in the 19th century and that for factory labour in the 20th. Computers can not only perform repetitive mental tasks much faster than human beings. They can also empower amateurs to do what professionals once did: why hire a flesh-and-blood accountant to complete your tax return when Turbotax (a software package) will do the job at a fraction of the cost? And the variety of jobs that computers can do is multiplying as programmers teach them to deal with tone and linguistic ambiguity. Several economists, including Paul Krugman, have begun to argue that post-industrial societies will be characterised not by a relentless rise in demand for the educated but by a great “hollowing out”, as mid-level jobs are destroyed by smart machines and high-level job growth slows. David Autor, of the Massachusetts Institute of Technology (MIT), points out that the main effect of automation in the computer era is not that it destroys blue-collar jobs but that it destroys any job that can be reduced to a routine. Alan Blinder, of Princeton University, argues that the jobs graduates have traditionally performed are if anything more “offshorable” than low-wage ones. A plumber or lorry-driver’s job cannot be outsourced to India.
  •  
    In 2008 Dick Nelson and Dan Sarewitz had a commentary in Nature (here in PDF) that eloquently summarized why it is that we should not expect technology in the classroom to reault in better educational outcomes as they suggest we should in the case of a tehcnology like vaccines
Weiye Loh

China accuses US of human rights double standards | World news | The Guardian - 0 views

  • Beijing has a doctrine of non-interference in other countries' internal affairs, but the State Council Information Office releases an annual report on the US human rights record as a riposte to Washington's criticisms. The document says it underlines the hypocrisy of the US and "its malicious design to pursue hegemony under the pretext of human rights".
  • Last week the secretary of state, Hillary Clinton, criticised China's "worsening" record – citing the detention of artist Ai Weiwei and others – as she released the annual state department survey of the human rights situation around the world. An introduction to the Chinese document, by the state news agency Xinhua, said the report was "full of distortions" and the US "turned a blind eye to its own terrible human rights situation".
  • Much of the document focuses on social and economic issues such as poverty, crime and racism. It attacks the US for the large number of civilian casualties in Iraq and Afghanistan and the prisoner abuse scandals that have dogged counterterrorism initiatives. It adds: "The violation of [US] citizens' civil and political rights by the government is severe … the United States applies double standards … by requesting unrestricted 'internet freedom' in other countries, which becomes an important diplomatic tool for the United States to impose pressure and seek hegemony, and imposing strict restriction within its territory.
  • ...1 more annotation...
  • the US government wants to boost internet freedom to give voices to citizens living in societies regarded as 'closed' and questions those governments' control over information flow, although within its borders the US government tries to create a legal frame to fight the challenge posed by WikiLeaks
joanne ye

Democracy Project to Fill Gap in Online Politics - 3 views

Reference: Democracy Project to Fill Gap in Online Politics (2000, June 8). PR Newswire. Retrieved 23 September, 2009, from Factiva. (Article can be found at bottom of the post) Summary: The D...

human rights digital freedom democracy

started by joanne ye on 24 Sep 09 no follow-up yet
Weiye Loh

Our ever-changing English | Alison Flood | Comment is free | guardian.co.uk - 0 views

  • Perhaps the Daily Mail should take a leaf out of Jonathan Swift's book and instead of blaming changes in English on "a tidal wave of mindless Americanisms", start calling those damned poets to book.
  • We've been whining on about the deterioration in English for years and years and years, and perhaps we need to get over ourselves. Looking at Swift's 300-year-old plea to keep things the same I'm minded to think that, actually, part of the glory of English, from Shakespeare's insults to Bombaugh's txt speak to the ever-expanding dictionaries of today, is its constantly changing nature, its adaptability, its responsiveness.
  •  
    Our ever-changing English I get grumpy about crimes against language. But we Brits have been lamenting declining standards of English for centuries
Weiye Loh

I am Singaporean VI - The Melting Pot « Die neue Welle - 0 views

  • On paper, Singaporean education is great. Our universities are in the Top 200 in the Times Higher Education list. We win Olympiads all the time. When it comes to knowing a basic inventory of facts, Singaporean education is just about the best you can get. And that is a fact.
  • So what’s missing?
  • Singapore is a true melting pot. In the past, as is today, and as will be tomorrow, many cultures came together into one. It has been lauded as one of Singapore’s big selling points – an eclectic fusion of Orient and Occident, a quaint East-meets-West mixture which happens to work. But have we taken this metaphor and looked at it from another perspective? Many cultures came together under the band of meritocracy – may the best rule, and may they rule with wisdom. And since they are the best, they are paid the best money one can get too. This is the fire which managed to melt, or should i say meld East and West into a functioning whole. And since we are such fans of meritocracy, society has been geared in that direction too. This melting pot which is Singapore has had certain repercussions, which the post I have linked to above shows. It seems that in developing the concept of meritocracy, what “The Best” is was artificially defined. And in artificially defining something, you create an artificial standard to compare everything against. In doing so, everything else becomes irrelevant. It creates a strong tendency towards conformity, which is the negative result of the melting pot. The individual loses his/her uniqueness and becomes part of this stew of uniformity. In school, you are told to study hard, you are told what you have to study, without any care as to what you actually think.
  • ...6 more annotations...
  • Individuality is not really encouraged, because there is a tried-and-tested formula for becoming good. Why would any sane person abandon that?
  • And, by the by, an artificial standard of what is Good is also very easy to objectify. Just look at the obsession with grades, and the thought that cramming is the panacea for all your examination woes.
  • in the midst of all that, something has gone missing. I think learning what it is to be a person has gone missing in Singaporean education. People assume that a sense of identity is a coming-of-age thing, that it will come with the times. And for the most part, that really is true. But this article is a case in point. I think that the melting pot has left little room for the individual to develop, since all differences have been swept away, and everyone is chasing after this artificial Good.
  • That having an individual opinion is sometimes seen as trouble-making is a symptom of this problem. That people know a lot, but don’t have a view on them is also a symptom of this problem. It’s all about working hard in Singapore. But after that, what’s left? Yet, working hard and sticking to that same old success formula is so ingrained into our society that it is hard to see how concrete change can come about.
  • We should be asking questions if “The Good” we are striving to be was misconstrued. We should be asking “What is Good for Me? What Should I Be?” And these are questions which should be asked, not only during the formative years of adolesence, but also constantly throughout one’s adult life. And these are questions which don’t have a textbook answer. And the asking of such questions should be cultivated in our youth, when they are ready for it.
  • We shouldn’t be doing what we are doing now – filling their lives with so much work, so much obsession with chasing after this artificial good that they don’t have time to stop and reflect. Nor will forcing them to reflect help – because then, it will be more work, and what’s worse, their reflections may be graded. The melting pot comes into play again. As educators, one should ask if we want to produce smart people or if we want  to produce wise people.
  •  
    Does Singaporean education teach students all about the world and nothing about themselves?
Weiye Loh

Skepticblog » Further Thoughts on the Ethics of Skepticism - 0 views

  • My recent post “The War Over ‘Nice’” (describing the blogosphere’s reaction to Phil Plait’s “Don’t Be a Dick” speech) has topped out at more than 200 comments.
  • Many readers appear to object (some strenuously) to the very ideas of discussing best practices, seeking evidence of efficacy for skeptical outreach, matching strategies to goals, or encouraging some methods over others. Some seem to express anger that a discussion of best practices would be attempted at all. 
  • No Right or Wrong Way? The milder forms of these objections run along these lines: “Everyone should do their own thing.” “Skepticism needs all kinds of approaches.” “There’s no right or wrong way to do skepticism.” “Why are we wasting time on these abstract meta-conversations?”
  • ...12 more annotations...
  • More critical, in my opinion, is the implication that skeptical research and communication happens in an ethical vacuum. That just isn’t true. Indeed, it is dangerous for a field which promotes and attacks medical treatments, accuses people of crimes, opines about law enforcement practices, offers consumer advice, and undertakes educational projects to pretend that it is free from ethical implications — or obligations.
  • there is no monolithic “one true way to do skepticism.” No, the skeptical world does not break down to nice skeptics who get everything right, and mean skeptics who get everything wrong. (I’m reminded of a quote: “If only there were evil people somewhere insidiously committing evil deeds, and it were necessary only to separate them from the rest of us and destroy them. But the line dividing good and evil cuts through the heart of every human being.”) No one has all the answers. Certainly I don’t, and neither does Phil Plait. Nor has anyone actually proposed a uniform, lockstep approach to skepticism. (No one has any ability to enforce such a thing, in any event.)
  • However, none of that implies that all approaches to skepticism are equally valid, useful, or good. As in other fields, various skeptical practices do more or less good, cause greater or lesser harm, or generate various combinations of both at the same time. For that reason, skeptics should strive to find ways to talk seriously about the practices and the ethics of our field. Skepticism has blossomed into something that touches a lot of lives — and yet it is an emerging field, only starting to come into its potential. We need to be able to talk about that potential, and about the pitfalls too.
  • All of the fields from which skepticism borrows (such as medicine, education, psychology, journalism, history, and even arts like stage magic and graphic design) have their own standards of professional ethics. In some cases those ethics are well-explored professional fields in their own right (consider medical ethics, a field with its own academic journals and doctoral programs). In other cases those ethical guidelines are contested, informal, vague, or honored more in the breach. But in every case, there are serious conversations about the ethical implications of professional practice, because those practices impact people’s lives. Why would skepticism be any different?
  • , Skeptrack speaker Barbara Drescher (a cognitive pyschologist who teaches research methodology) described the complexity of research ethics in her own field. Imagine, she said, that a psychologist were to ask research subjects a question like, “Do your parents like the color red?” Asking this may seem trivial and harmless, but it is nonetheless an ethical trade-off with associated risks (however small) that psychological researchers are ethically obliged to confront. What harm might that question cause if a research subject suffers from erythrophobia, or has a sick parent — or saw their parents stabbed to death?
  • When skeptics undertake scientific, historical, or journalistic research, we should (I argue) consider ourselves bound by some sort of research ethics. For now, we’ll ignore the deeper, detailed question of what exactly that looks like in practical terms (when can skeptics go undercover or lie to get information? how much research does due diligence require? and so on). I’d ask only that we agree on the principle that skeptical research is not an ethical free-for-all.
  • when skeptics communicate with the public, we take on further ethical responsibilities — as do doctors, journalists, and teachers. We all accept that doctors are obliged to follow some sort of ethical code, not only of due diligence and standard of care, but also in their confidentiality, manner, and the factual information they disclose to patients. A sentence that communicates a diagnosis, prescription, or piece of medical advice (“you have cancer” or “undertake this treatment”) is not a contextless statement, but a weighty, risky, ethically serious undertaking that affects people’s lives. It matters what doctors say, and it matters how they say it.
  • Grassroots Ethics It happens that skepticism is my professional field. It’s natural that I should feel bound by the central concerns of that field. How can we gain reliable knowledge about weird things? How can we communicate that knowledge effectively? And, how can we pursue that practice ethically?
  • At the same time, most active skeptics are not professionals. To what extent should grassroots skeptics feel obligated to consider the ethics of skeptical activism? Consider my own status as a medical amateur. I almost need super-caps-lock to explain how much I am not a doctor. My medical training began and ended with a couple First Aid courses (and those way back in the day). But during those short courses, the instructors drummed into us the ethical considerations of our minimal training. When are we obligated to perform first aid? When are we ethically barred from giving aid? What if the injured party is unconscious or delirious? What if we accidentally kill or injure someone in our effort to give aid? Should we risk exposure to blood-borne illnesses? And so on. In a medical context, ethics are determined less by professional status, and more by the harm we can cause or prevent by our actions.
  • police officers are barred from perjury, and journalists from libel — and so are the lay public. We expect schoolteachers not to discuss age-inappropriate topics with our young children, or to persuade our children to adopt their religion; when we babysit for a neighbor, we consider ourselves bound by similar rules. I would argue that grassroots skeptics take on an ethical burden as soon as they speak out on medical matters, legal matters, or other matters of fact, whether from platforms as large as network television, or as small as a dinner party. The size of that burden must depend somewhat on the scale of the risks: the number of people reached, the certainty expressed, the topics tackled.
  • tu-quoque argument.
  • How much time are skeptics going to waste, arguing in a circular firing squad about each other’s free speech? Like it or not, there will always be confrontational people. You aren’t going to get a group of people as varied as skeptics are, and make them all agree to “be nice”. It’s a pipe dream, and a waste of time.
  •  
    FURTHER THOUGHTS ON THE ETHICS OF SKEPTICISM
1 - 20 of 119 Next › Last »
Showing 20 items per page