Skip to main content

Home/ Neuropsychology/ Group items tagged brain development

Rss Feed Group items tagged

Tero Toivanen

Left Brain and Right Brain | Boost Your IQ - 0 views

  • The left brain follows a completely different “way” and process of thinking from the right brain. The left brain sees things in an analytical, objective and logical manner. The right brain on the other hand is more symbol and metaphorically orientated.
  • In order to develop a particular brain, it is therefore necessary to focus on doing things which complement its attributes. For example, if I were to develop my left brain, i would embark on logical analysis and maths. If I were to exercise my right brain, i would indulge in art work.
  • do you see the dancer turning clockwise or anti-clockwise? If clockwise, then you use more of the right side of the brain and vice versa.
  •  
    do you see the dancer turning clockwise or anti-clockwise?
Tero Toivanen

First Evidence That Musical Training Affects Brain Development In Young Children - 0 views

  • The findings, published today (20 September 2006) in the online edition of the journal Brain [1], show that not only do the brains of musically-trained children respond to music in a different way to those of the untrained children, but also that the training improves their memory as well. After one year the musically trained children performed better in a memory test that is correlated with general intelligence skills such as literacy, verbal memory, visiospatial processing, mathematics and IQ.
  • Researchers have found the first evidence that young children who take music lessons show different brain development and improved memory over the course of a year compared to children who do not receive musical training.
  • While previous studies have shown that older children given music lessons had greater improvements in IQ scores than children given drama lessons, this is the first study to identify these effects in brain-based measurements in young children.
  • ...6 more annotations...
  • The researchers chose children being trained by the Suzuki method for several reasons: it ensured the children were all trained in the same way, were not selected for training according to their initial musical talent and had similar support from their families. In addition, because there was no early training in reading music, the Suzuki method provided the researchers with a good model of how training in auditory, sensory and motor activities induces changes in the cortex of the brain.
  • Analysis of the MEG responses showed that across all children, larger responses were seen to the violin tones than to the white noise, indicating that more cortical resources were put to processing meaningful sounds. In addition, the time that it took for the brain to respond to the sounds (the latency of certain MEG components) decreased over the year. This means that as children matured, the electrical conduction between neurons in their brains worked faster.
  • Of most interest, the Suzuki children showed a greater change over the year in response to violin tones in an MEG component (N250m) related to attention and sound discrimination than did the children not taking music lessons.
  • Analysis of the music tasks showed greater improvement over the year in melody, harmony and rhythm processing in the children studying music compared to those not studying music. General memory capacity also improved more in the children studying music than in those not studying music.
  • The finding of very rapid maturation of the N250m component to violin sounds in children taking music lessons fits with their large improvement on the memory test. It suggests that musical training is having an effect on how the brain gets wired for general cognitive functioning related to memory and attention.
  • It is clear that music is good for children's cognitive development and that music should be part of the pre-school and primary school curriculum.
  •  
    Researchers have found the first evidence that young children who take music lessons show different brain development and improved memory over the course of a year compared to children who do not receive musical training.
Tero Toivanen

Selective aphasia in a brain damaged bilingual patient : Neurophilosophy - 0 views

  • A unique case study published in the open access journal Behavioral and Brain Functions sheds some light on this matter. The study, by Raphiq Ibrahim, a neurologist at the University of Haifa, describes a bilingual Arabic-Hebrew speaker who incurred brain damage following a viral infection. Consequently, the patient experienced severe deficits in Hebrew but not in Arabic. The findings support the view that specific components of a first and second language are represented by different substrates in the brain.
  • A native Arabic speaker, he learned Hebrew at an early age (4th grade) and later used it competently both professionally and academically.
  • A CT scan showed that he had suffered a massive hemorrhage in the left temporal lobe, which was compressing the tissue on both sides of the central sulcus, the prominent gfissure which separates the frontal and parietal lobes.
  • ...4 more annotations...
  • A craniotomy was performed to relieve the pressure, and afterwards another scan showed moderate hemorrhage and herpes encephalitis in the left temporal lobe, and another hemorrhage beneath the outer membrane (the dura) lying over the right frontal lobe.
  • During his 2 month stay there, he developed epileptic seizures which originated in the left temporal lobe, and amnestic aphasia (an inability to name objects or to recognize their written or spoken names). 
  • After the rehabilitation period, a series of linguistic tests was administered to determine the extent of his speech deficits. M.H. exhibited deficits in both languages, but the most severe deficits were seen only in Hebrew. In this language he had a severe difficulty in recalling words and names, so that his speech was non-fluent and interrupted by frequent pauses. He had difficulty understanding others' spoken Hebrew, and also had great difficulty reading and writing Hebrew. In Arabic, his native language, all of these abilities were affected only mildy.
  • The results support a neurolinguistic model in which the brain of bilinguals contains a semantic system (which represents word meanings) which is common to both languages and which is connected to independent lexical systems (which encode the vocabulary of each language). The findings further suggest that the second language (in this case, Hebrew) is represented by an independent subsystem which does not represent the first language (Arabic) and is more succeptible to brain damage.
  •  
    A unique case study published in the open access journal Behavioral and Brain Functions sheds some light on this matter. The study, by Raphiq Ibrahim, a neurologist at the University of Haifa, describes a bilingual Arabic-Hebrew speaker who incurred brain damage following a viral infection. Consequently, the patient experienced severe deficits in Hebrew but not in Arabic. The findings support the view that specific components of a first and second language are represented by different substrates in the brain.
Tero Toivanen

AK's Rambling Thoughts: Nerve Cells and Glial Cells: Redefining the Foundation of Intel... - 0 views

  • Glia are generally divided into two broad classes, microglia and macroglia. Microglia are part of the immune system, specialized macrophages, and probably don't participate in information handling. Macroglia are present in both the peripheral and central nervous systems, in different types.
  • Traditionally, there were four types of glia in the CNS: astrocytes, oligodendrocytes, ependymal cells, and radial glia. Of these, the one type that's most important to the developing revolution in our ideas are those cells called astrocytes.2 It turns out that there are at least two types of cell (at least) subsumed under this name.24, 25, 31, 32 One, which retains the name of astrocyte, takes up neurotransmitters released by neurons (and glial cells), aids in osmoregulation,10 controls circulation in the brain,1, 31 and generally appears to provide support for the neurons and other types of glia.
  • Although both NG2-glia and astrocytes extend processes to nodes of Ranvier in white matter ([refs]) and synapses in grey matter, their geometric relationship to these neuronal elements is different. Thus, although astrocytes and NG2-glia bear a superficial resemblance, they are distinguished by their different process arborizations. This will reflect fundamental differences in the way these two glial cell populations interact with other elements in the neural network.
  • ...13 more annotations...
  • Both types of glia are closely integrated with the nervous system, receiving information from action potentials via synapses22 (which, only a few years ago were thought to be limited to neurons), and returning control of neuron activity through release of neurotransmitters and other modulators. Both, then, demonstrate the potential for considerable intelligent activity, contributing to the overall intelligence of the brain.
  • Astrocytes probably (IMO) are limited, or mostly so, to maintaining the supplies of energy and necessary metabolites. They receive action potentials,3, 6 which allows them to closely and quickly monitor general activity and increase circulation in response, even before the neurons and NG2-glia have reduced their supply of ATP.21 They appear to be linked in a network among themselves,2, 5 allowing them to communicate their needs without interfering with the higher-level calculations of the brain.
  • NG2-glia appear to have several functions, but one of the most exciting things about them is that they seem to be able to fire action potentials.33 Their cell membranes, like those of the dendrites of neurons, have all the necessary channels and receptors to perform real-time electrical calculations in the same way as neural dendrites. They have also demonstrated the ability to learn through long term potentiation.
  • Dividing NG2-glia also retain the ability to fire action potentials, as well as receiving synaptic inputs from neurons.23 Presumably, they continue to perform their full function, including retaining any elements of long term potentiation or depression contained in their synapses.
  • Oligodendrocytes are responsible for the insulation of the axons, wrapping around approximately 1 mm of each of up to 50 axons within their reach, and forming the myelin sheath.
  • Although the precise type of neuron formed by maturing cells hasn't been determined, the very fact that cells of this type can change into neurons is very important. We actually don't know whether the cells that do this maturation are the same as those that perform neuron-like activities, there appear to be two separate types of NG2-glia, spiking and non-spiking.26 It may very well be that the "spiking" type have actually differentiated, while the "non-spiking" type may be doing the maturing. Of course, very few differentiated cell types remain capable of division, as even the "spiking" type do.
  • What's important about both dendrites and NG2-glia isn't so much their ability to propagate action potentials, as that their entire cell membranes are capable of "intelligent" manipulation of the voltage across it.
  • While there are many ion channels involved in controlling the voltage across the cell membrane, the only type we really need to worry about for action potentials is voltage-gated sodium channels. These are channels that sometimes allow sodium ions to pass through the cell membrane, which they will do because the concentration of sodium ions outside the cell is very much higher than inside. When and how much they open depends, among other things, on the voltage across the membrane.
  • A normal neuron will have a voltage of around -60 to -80mV (millivolts), in a direction that tends to push the sodium ions (which are positive) into the cell (the same direction as the concentration is pushing). When the voltage falls to around -55mV, the primary type of gate will open for a millisecond or so, after which it will close and rest for several milliseconds. It won't be able to open again until the voltage is somewhere between -55 and around -10mV. Meanwhile, the sodium current has caused the voltage to swing past zero to around +20mV.
  • When one part of the cell membrane is "depolarized" in this fashion, the voltage near it is also depressed. Thus, if the voltage is at zero at one point, it might be at -20mV 10 microns (μm) away, and -40mV 20μm away, and -60mV 30μm, and so on. Notice that somewhere between 20μm and 30μm, it has passed the threshold for the ion channels, which means that they are open, allowing a current that drives the voltage further down. This will produce a wave of voltage drop along the membrane, which is what the action potential is.
  • After the action potential has passed, and the gates have closed (see above), the voltage is recovered by diffusion of ions towards and away from the membrane, the opening of other gates (primarily potassium), and a set of pumps that push the ions back to their resting state. These pumps are mostly powered by the sodium gradient, except for the sodium/potassium pump that maintains it, which is powered by ATP.
  • the vast majority of calculation that goes into human intelligence takes place at the level of the network of dendrites and NG2-glia, with the whole system of axons, dendrites, and action potentials only carrying a tiny subset of the total information over long distances. This is especially important considering that the human brain has a much higher proportion of glial matter than our relatives.
  • This, in turn, suggests that our overall approach to understanding the brain has been far too axon centric, there needs to be a shift to a more membrane-centric approach to understanding how the brain creates intelligence.
  •  
    Our traditional idea of how the brain works is based on the neuron: it fires action potentials, which travel along the axon and, when the reach the synapses, the receiving neuron performs a calculation that results in the decision when (or whether) to fire its own action potential. Thus, the brain, from a thinking point of view, is viewed as a network of neurons each performing its own calculation. This view, which I'm going to call the axon-centric view, is simplistic in many ways, and two recent papers add to it, pointing up the ways in which the glial cells of the brain participate in ongoing calculation as well as performing their more traditional support functions.
Tero Toivanen

Adult Learning - Neuroscience - How to Train the Aging Brain - NYTimes.com - 1 views

  • One explanation for how this occurs comes from Deborah M. Burke, a professor of psychology at Pomona College in California. Dr. Burke has done research on “tots,” those tip-of-the-tongue times when you know something but can’t quite call it to mind. Dr. Burke’s research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
  • But she also finds that if you are primed with sounds that are close to those you’re trying to remember — say someone talks about cherry pits as you try to recall Brad Pitt’s name — suddenly the lost name will pop into mind. The similarity in sounds can jump-start a limp brain connection. (It also sometimes works to silently run through the alphabet until landing on the first letter of the wayward word.)
  • Recently, researchers have found even more positive news. The brain, as it traverses middle age, gets better at recognizing the central idea, the big picture. If kept in good shape, the brain can continue to build pathways that help its owner recognize patterns and, as a consequence, see significance and even solutions much faster than a young person can.
  • ...5 more annotations...
  • The trick is finding ways to keep brain connections in good condition and to grow more of them.
  • Educators say that, for adults, one way to nudge neurons in the right direction is to challenge the very assumptions they have worked so hard to accumulate while young. With a brain already full of well-connected pathways, adult learners should “jiggle their synapses a bit” by confronting thoughts that are contrary to their own, says Dr. Taylor, who is 66.
  • Teaching new facts should not be the focus of adult education, she says. Instead, continued brain development and a richer form of learning may require that you “bump up against people and ideas” that are different. In a history class, that might mean reading multiple viewpoints, and then prying open brain networks by reflecting on how what was learned has changed your view of the world.
  • Such stretching is exactly what scientists say best keeps a brain in tune: get out of the comfort zone to push and nourish your brain. Do anything from learning a foreign language to taking a different route to work.
  • “As adults we have these well-trodden paths in our synapses,” Dr. Taylor says. “We have to crack the cognitive egg and scramble it up. And if you learn something this way, when you think of it again you’ll have an overlay of complexity you didn’t have before — and help your brain keep developing as well.”
  •  
    Dr. Burke has done research on "tots," those tip-of-the-tongue times when you know something but can't quite call it to mind. Dr. Burke's research shows that such incidents increase in part because neural connections, which receive, process and transmit information, can weaken with disuse or age.
Tero Toivanen

NIMH · Our brains are made of the same stuff, despite DNA differences - 0 views

  • “Having at our fingertips detailed information about when and where specific gene products are expressed in the brain brings new hope for understanding how this process can go awry in schizophrenia, autism and other brain disorders,” said NIMH Director Thomas R. Insel, M.D.
  • Among key findings in the prefrontal cortex:Individual genetic variations are profoundly linked to expression patterns. The most similarity across individuals is detected early in development and again as we approach the end of life.Different types of related genes are expressed during prenatal development, infancy, and childhood, so that each of these stages shows a relatively distinct transcriptional identity. Three-fourths of genes reverse their direction of expression after birth, with most switching from on to off.Expression of genes involved in cell division declines prenatally and in infancy, while expression of genes important for making synapses, or connections between brain cells, increases. In contrast, genes required for neuronal projections decline after birth – likely as unused connections are pruned.By the time we reach our 50s, overall gene expression begins to increase, mirroring the sharp reversal of fetal expression changes that occur in infancy.Genetic variation in the genome as a whole showed no effect on variation in the transcriptome as a whole, despite how genetically distant individuals might be. Hence, human cortexes have a consistent molecular architecture, despite our diversity.
  • Among key findings:Over 90 percent of the genes expressed in the brain are differentially regulated across brain regions and/or over developmental time periods. There are also widespread differences across region and time periods in the combination of a gene’s exons that are expressed.Timing and location are far more influential in regulating gene expression than gender, ethnicity or individual variation.Among 29 modules of co-expressed genes identified, each had distinct expression patterns and represented different biological processes. Genetic variation in some of the most well-connected genes in these modules, called hub genes, has previously been linked to mental disorders, including schizophrenia and depression.Telltale similarities in expression profiles with genes previously implicated in schizophrenia and autism are providing leads to discovery of other genes potentially involved in those disorders.Sex differences in the risk for certain mental disorders may be traceable to transcriptional mechanisms. More than three-fourths of 159 genes expressed differentially between the sexes were male-biased, most prenatally. Some genes found to have such sex-biased expression had previously been associated with disorders that affect males more than females, such as schizophrenia, Williams syndrome, and autism.
  • ...2 more annotations...
  • Our brains are all made of the same stuff. Despite individual and ethnic genetic diversity, our prefrontal cortex shows a consistent molecular architecture.
  • Males show more sex-biased gene expression. More genes differentially expressed (DEX) between the sexes were found in males than females, especially prenatally. Some genes found to have such sex-biased expression had previously been associated with disorders that affect males more than females, such as schizophrenia, Williams syndrome, and autism.
  •  
    Our brains are all made of the same stuff. Despite individual and ethnic genetic diversity, our prefrontal cortex shows a consistent molecular architecture. 
Tero Toivanen

Brain Stimulant: Brain Chip to Restore Functioning from Damage - 1 views

  • The ReNaChip project is developing electronic biomimetic technology that could serve to replace damaged or missing brain tissue. This is basically neuromorphic engineering that seeks to mimic how neurons function. In the future this may be useful for people who have had injuries due to stroke or other illnesses.
  • The objective of this project is to develop a full biohybrid rehabilitation and substitution methodology; replacing the aged cerebellar brain circuit with a biomimetic chip bidirectionally interfaced to the inputs and outputs of the system. Information processing will interface with the cerebellum to actuate a normal, real-time functional behavioural recovery, providing a proof-of-concept test for the functional rehabilitation of more complex neuronal systems.
  • A sophisticated exocortex could potentially allow a two way communication between the external apparatus and the mind. The contraption could essentially scale up the amount of neurons in your brain by an artificial means. Most likely it would be used to improved the disabled first, with other applications being more speculative possibilities.
  •  
    The ReNaChip project is developing electronic biomimetic technology that could serve to replace damaged or missing brain tissue. This is basically neuromorphic engineering that seeks to mimic how neurons function. In the future this may be useful for people who have had injuries due to stroke or other illnesses.
Tero Toivanen

Music and Intelligence | Boost Your IQ - 0 views

  • Studies indicate that early exposure to musical training helps a child’s brain reach its potential by generating neural connections utilized in abstract reasoning.
  • The reasoning skills required for a test in spatial reasoning are the same ones children use when they listen to music. Children use these reasoning skills to order the notes in their brain to form the melodies. Also, some concepts of math must be understood in order to understand music. Experts speculate that listening to music exercises the same parts of the brain that handle mathematics, logic, and higher level reasoning.
  • In 1997 a study involving three groups of preschoolers was conducted to determine the effect of music versus computer training on early childhood development.
  • ...9 more annotations...
  • The group that received the piano/keyboard training scored 34% higher on tests measuring spatial-temporal ability than either of the other two groups. These results suggest that music enhances certain higher brain functions, particularly abstract reasoning skills, required in math and science.
  • The use of music in training four and five year old children yielded the highest improvement in the ability to name body parts.
  • Although the three experimental groups displayed an increase in their ability to name body parts the music group exhibited the highest degree of improvement.
  • First grade students received extensive Kodaly training for seven months.
  • At the end of seven months the experimental group had higher reading scores than the control group, which did not receive any special treatment. Not only did the seven month instruction increase reading scores, but continued musical training proved to be beneficial. The experimental group continued to show higher reading scores with continued training.
  • Students who were involved in arts education achieved higher SAT scores. The longer students were involved in arts education, the higher the increase in SAT scores. This study also correlated arts education with higher scores in standardized tests, reading, English, history, citizenship, and geography.
  • The results indicated that students with a relatively lower socioeconomic status, that were exposed to arts education, had an advantage over those students without any arts education which was proportionally equal to the students with a relatively higher socioeconomic status and exposure to arts education.
  • Music exposure affects older students as well. Three groups of college students were exposed to either Mozart’s Sonata for Two Pianos, K448, a relaxation tape, or silence. The group exposed to the Mozart piece was the only group to achieve an increase on the spatial IQ test. Further studies revealed that neither dance music nor taped short stories produced an increase in spatial IQ similar to the Mozart piece. The increase in spatial IQ appears to be related to some unique aspects of the Mozart piece rather than music in general.
  • Music may not only be related to intelligence by its stimulation of the brain, but it may also increase intelligence by the type of attitudes, interests, and discipline it fosters in children.
  •  
    Studies indicate that early exposure to musical training helps a child's brain reach its potential by generating neural connections utilized in abstract reasoning.
David McGavock

How Did Consciousness Evolve? - The Atlantic - 0 views

  • consciousness, is rarely studied in the context of evolution.
  • What is the adaptive value of consciousness? When did it evolve and what animals have it?
  • Attention Schema Theory (AST),
  • ...20 more annotations...
  • suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others,
  • The next evolutionary advance was a centralized controller for attention that could coordinate among all senses. In many animals, that central controller is a brain area called the tectum
  • It coordinates something called overt attention
  • The tectum is a beautiful piece of engineering. To control the head and the eyes efficiently, it constructs something called an internal model, a feature well known to engineers. An internal model is a simulation that keeps track of whatever is being controlled and allows for predictions and planning.
  • With the evolution of reptiles around 350 to 300 million years ago, a new brain structure began to emerge – the wulst
  • our version is usually called the cerebral cortex and has expanded enormously
  • The cortex is like an upgraded tectum
  • The most important difference between the cortex and the tectum may be the kind of attention they control
  • tectum is the master of overt attention—pointing the sensory apparatus toward anything important
  • cortex ups the ante with something called covert attention
  • Your cortex can shift covert attention from the text in front of you to a nearby person, to the sounds in your backyard, to a thought or a memory. Covert attention is the virtual movement of deep processing from one item to another.
  • the cortex must model something much more abstract.
  • it does so by constructing an attention schema
  • a constantly updated set of information that describes what covert attention is doing moment-by-moment and what its consequences are
  • The attention schema is therefore strategically vague. It depicts covert attention in a physically incoherent way, as a non-physical essence. And this, according to the theory, is the origin of consciousness. We say we have consciousness because deep in the brain, something quite primitive is computing that semi-magical self-description.
  • In the AST, the attention schema first evolved as a model of one’s own covert attention. But once the basic mechanism was in place, according to the theory, it was further adapted to model the attentional states of others, to allow for social prediction
  • theory of mind, the ability to understand the possible contents of someone else’s mind.
  • Language is perhaps the most recent big leap in the evolution of consciousness. Nobody knows when human language first evolved. Certainly we had it by 70 thousand years ago when people began to disperse around the world, since all dispersed groups have a sophisticated language.
  • Maybe partly because of language and culture, humans have a hair-trigger tendency to attribute consciousness to everything around us.
  • Justin Barrett called it the Hyperactive Agency Detection Device, or HADD
  •  
    The Attention Schema Theory (AST), developed over the past five years, may be able to answer those questions. The theory suggests that consciousness arises as a solution to one of the most fundamental problems facing any nervous system: Too much information constantly flows in to be fully processed. The brain evolved increasingly sophisticated mechanisms for deeply processing a few select signals at the expense of others, and in the AST, consciousness is the ultimate result of that evolutionary sequence. If the theory is right-and that has yet to be determined-then consciousness evolved gradually over the past half billion years and is present in a range of vertebrate species.
Tero Toivanen

Investing in the Developing Brain : The Frontal Cortex - 0 views

  • But there has been one major payoff from our investigations of the brain: an increasing emphasis on educating young children, before they reach kindergarten. Decades of research have demonstrated that the cortex is astonishingly plastic at a young age and that many important traits and habits seem to solidify before the age of 4.
  •  
    But there has been one major payoff from our investigations of the brain: an increasing emphasis on educating young children, before they reach kindergarten. Decades of research have demonstrated that the cortex is astonishingly plastic at a young age and that many important traits and habits seem to solidify before the age of 4.
Matti Narkia

How to unleash your brain's inner genius - life - 03 June 2009 - New Scientist - 0 views

  •  
    Savants - individuals with conditions that result in remarkable mathematical, artistic or musical talents - are extremely rare. But new findings about how their formidable brains work hint that we might all be able to develop similar abilities
David McGavock

Scientific Understanding of Consciousness - 0 views

  • During the past 20 years or so, biological sciences have advanced to the point that scientists have begun researching biological mechanisms of brain function and suggesting some reasonably well-founded hypotheses for consciousness. Leading the way in these pioneering efforts, in my judgment, have been:   Gerald Edelman with his hypothesis of the Dynamic Core, Antonio Damasio with his concepts of  Protoself, Core Self, Autobiographical Self, Core Consciousness and Extended Consciousness, Joseph LeDoux and his emphasis on the intricacies of synapses and the emotional brain,
  • Rudolfo Llinás and his researches into ~40 Hz oscillations and synchronization, György Buzsáki with his discussion and exploration of neural mechanisms related to oscillation and synchronization in the neocortex and hippocampus for perception and memory, Joaquín Fuster, the world’s preeminent expert on the frontal lobes, and his concept of the "perception-action cycle," Susan Greenfield's notion of "neuronal gestalts" as a way of conceptualizing a highly variable aggregation of neurons that is temporarily recruited around a triggering epicenter. I use the neuronal gestalts idea in my way of visualizing the functionality of the dynamic core of the thalamocortical system, Eric Kandel who has explored short-term and long-term memory,
  • The late Francis Crick with his collaborator Christof Koch who have pursued the neural correlate of consciousness (NCC), Michael Gazzaniga with the concept of the left hemisphere ‘interpreter’ unifying consciousness experience, Edmund Rolls and Gustavo Deco with their mathematical models of brain function using information theory approaches for biologically plausible neurodynamical modeling of cognitive phenomena corroborated by brain imaging studies, David LaBerge with his discussion of the thalamocortical circuit and attention, Alan Baddeley who continues to refine his model for working memory, Philosopher John Searle who endorses the idea that consciousness is an emergent property of neural networks.
  •  
    "My objective in this website has been to bring together salient features of these assorted interpretations by science experts into a synthesis of my own understanding of consciousness. I consider these statements and interpretations to be a framework on which to build a fuller understanding as further data, concepts and insights develop from ongoing research."
Tero Toivanen

Innovation: Mind-reading headsets will change your brain - tech - 23 April 2009 - New S... - 0 views

  • This week, engineer Adam Wilson made global headlines by updating Twitter using his brainwaves. "USING EEG TO SEND TWEET" he explained.
  • Escaping the lab Researchers have developed systems that read brainwaves – in the form of electroencephalogram (EEG) signals – in order to help people suffering from disabilities or paralysis control wheelchairs, play games , or type on a computer. Now, two companies are preparing to market similar devices to mainstream consumers.
  • Compatible with any PC running Windows, it will ship later this year for $299 (see image). They have shown off a game where the player moves stones to rebuild Stonehenge using mind power alone (see video).
  • ...1 more annotation...
  • Californian company NeuroSky has also built a device that can detect emotions: the firm says it can tell whether you are focused, relaxed, afraid or anxious, for example.
  •  
    This week, engineer Adam Wilson made global headlines by updating Twitter using his brainwaves. "USING EEG TO SEND TWEET" he explained.
Tero Toivanen

http://www.sciencedaily.com/releases/2009/12/091223125125.htm - 1 views

  •  
    Scientists at UC Santa Barbara have made a major discovery in how the brain encodes memories. The finding, published in the December 24 issue of the journal Neuron, could eventually lead to the development of new drugs to aid memory.
David McGavock

Wired for Success - 0 views

  •  
    "The New Directions Institute's Wired for Success® program is a four-hour workshop for parents, caregivers and interested community members. This workshop is fun-filled, with hands-on experiences that show caregivers how critical their role can be in stimulating a child's development. Participants will explore brain development based on S.T.E.P.S.®, the NDI curriculum concentrating on Security, Touch, Eyes (vision), Play and Sound modules. Participants learn how to encourage a child's learning through parent-child interactions in these areas. "
1 - 16 of 16
Showing 20 items per page