Skip to main content

Home/ Neuropsychology/ Group items tagged bilingual

Rss Feed Group items tagged

Tero Toivanen

Selective aphasia in a brain damaged bilingual patient : Neurophilosophy - 0 views

  • A unique case study published in the open access journal Behavioral and Brain Functions sheds some light on this matter. The study, by Raphiq Ibrahim, a neurologist at the University of Haifa, describes a bilingual Arabic-Hebrew speaker who incurred brain damage following a viral infection. Consequently, the patient experienced severe deficits in Hebrew but not in Arabic. The findings support the view that specific components of a first and second language are represented by different substrates in the brain.
  • A native Arabic speaker, he learned Hebrew at an early age (4th grade) and later used it competently both professionally and academically.
  • A CT scan showed that he had suffered a massive hemorrhage in the left temporal lobe, which was compressing the tissue on both sides of the central sulcus, the prominent gfissure which separates the frontal and parietal lobes.
  • ...4 more annotations...
  • A craniotomy was performed to relieve the pressure, and afterwards another scan showed moderate hemorrhage and herpes encephalitis in the left temporal lobe, and another hemorrhage beneath the outer membrane (the dura) lying over the right frontal lobe.
  • During his 2 month stay there, he developed epileptic seizures which originated in the left temporal lobe, and amnestic aphasia (an inability to name objects or to recognize their written or spoken names). 
  • After the rehabilitation period, a series of linguistic tests was administered to determine the extent of his speech deficits. M.H. exhibited deficits in both languages, but the most severe deficits were seen only in Hebrew. In this language he had a severe difficulty in recalling words and names, so that his speech was non-fluent and interrupted by frequent pauses. He had difficulty understanding others' spoken Hebrew, and also had great difficulty reading and writing Hebrew. In Arabic, his native language, all of these abilities were affected only mildy.
  • The results support a neurolinguistic model in which the brain of bilinguals contains a semantic system (which represents word meanings) which is common to both languages and which is connected to independent lexical systems (which encode the vocabulary of each language). The findings further suggest that the second language (in this case, Hebrew) is represented by an independent subsystem which does not represent the first language (Arabic) and is more succeptible to brain damage.
  •  
    A unique case study published in the open access journal Behavioral and Brain Functions sheds some light on this matter. The study, by Raphiq Ibrahim, a neurologist at the University of Haifa, describes a bilingual Arabic-Hebrew speaker who incurred brain damage following a viral infection. Consequently, the patient experienced severe deficits in Hebrew but not in Arabic. The findings support the view that specific components of a first and second language are represented by different substrates in the brain.
Tero Toivanen

The Neural Advantage of Speaking 2 Languages: Scientific American - 0 views

  • The ability to speak a second language isn’t the only thing that distinguishes bilingual people from their monolingual counterparts—their brains work differently, too. Research has shown, for instance, that children who know two languages more easily solve problems that involve misleading cues.
  • The findings suggest that after learning a second language, people never look at words the same way again.
  • “The most important implication of the study is that even when a per­son is reading in his or her native language, there is an influence of knowledge of the nondominant second language,” Van Assche notes. “Becoming a bilingual changes one of people’s most automatic skills.”
  •  
    "The most important implication of the study is that even when a per son is reading in his or her native language, there is an influence of knowledge of the nondominant second language," Van Assche notes. "Becoming a bilingual changes one of people's most automatic skills."
Tero Toivanen

» Brain Plasticity: How learning changes your brain   « Brain Fitness Revolut... - 0 views

  • A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
  • The brain compensates for damage by reorganizing and forming new connections between intact neurons. In order to reconnect, the neurons need to be stimulated through activity.
  • Research has shown that in fact the brain never stops changing through learning. Plasticity IS the capacity of the brain to change with learning. Changes associated with learning occur mostly at the level of the connections between neurons. New connections can form and the internal structure of the existing synapses can change.
  • ...6 more annotations...
  • It looks like learning a second language is possible through functional changes in the brain: the left inferior parietal cortex is larger in bilingual brains than in monolingual brains.
  • Did you know that when you become an expert in a specific domain, the areas in your brain that deal with this type of skill will grow?
  • For instance, London taxi drivers have a larger hippocampus (in the posterior region) than London bus drivers (Maguire, Woollett, & Spiers, 2006)…. Why is that? It is because this region of the hippocampus is specialized in acquiring and using complex spatial information in order to navigate efficiently. Taxi drivers have to navigate around London whereas bus drivers follow a limited set of routes.
  • Plastic changes also occur in musicians brains compared to non-musicians.
  • They found that gray matter (cortex) volume was highest in professional musicians, intermediate in amateur musicians, and lowest in non-musicians in several brain areas involved in playing music: motor regions, anterior superior parietal areas and inferior temporal areas.
  • Medical students’ brains showed learning-induced changes in regions of the parietal cortex as well as in the posterior hippocampus. These regions of the brains are known to be involved in memory retrieval and learning.
  •  
    A surprising consequence of neuroplasticity is that the brain activity associated with a given function can move to a different location as a consequence of normal experience, brain damage or recovery.
1 - 5 of 5
Showing 20 items per page