Skip to main content

Home/ foe_2013/ Group items tagged model

Rss Feed Group items tagged

Alpha Teleco

R Tutorial Series: Basic Polynomial Regression | (R news & tutorials) - 0 views

    • Alpha Teleco
       
      Tutorial regresión no lineal basica en R.
  • Polynomial regression can be used to explore a predictor at different levels of curvilinearity.
  • This tutorial will demonstrate how polynomial regression can be used in a hierarchical fashion to best represent a dataset in R.
  • ...24 more annotations...
  • Scatterplot
    • Alpha Teleco
       
      El grafico de dispersion demuestra que estos datos pueden no ser lineales.
  • The preceding scatterplot demonstrates that these data may not be linear.
    • Alpha Teleco
       
      Como crear variables de orden lineal, cuadratico y cubico.
  • Creating The Higher Order Variables
    • Alpha Teleco
       
      Paso 1: centrar la variable, restando la media de cada punto y guardando el resultado en una nueva variable de R.
  • In this tutorial, we will explore the a linear, quadratic, and cubic model.
  • Step 1: Centering
  • To center a variable, simply subtract its mean from each data point and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Paso 2: Crear los terminos de orden superior multiplicando la variable creada por si misma y guardando el resultado en una nueva variable.
  • Step 2: Multiplication
  • Once the input variable has been centered, the higher order terms can be created.
  • we can simply multiply our centered term from step one and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Crear los modelos lineales y no lineales.
  • Creating The Models
  • Now we have all of the pieces necessary to assemble our linear and curvilinear models.
    • Alpha Teleco
       
      Evaluar los modelos y compararlos, en el ejemplo se observa que no ha una diferencia significativa entre los tres modelos.
  • Evaluating The Models
  • In this case, the quadratic and cubic terms are not statistically significant themselves nor are their models statistically significant beyond the linear model.
  • it can be helpful to summarize and compare our potential models using the summary(MODEL) and anova(MODEL1, MODEL2,… MODELi) functions.
    • Alpha Teleco
       
      A traves de los modelos que hay en este tutorial se pueden crear modelos muy complejos, utilizando las mismas sencillas tecnicas de este tutorial.
  • More On Interactions, Polynomials, and HLR
  • The regression topics covered in these tutorials can be mixed and matched to create exceedingly complex models.
  • The good news is that more complex models can be created using the same techniques covered here. The basic principles remain the same.
  •  
    Tutorial
viinjo A1c

Oracle launches Advanced Analytics for R modeling language | Business Intelligence - In... - 0 views

  • It's available as an Oracle 11g database option and costs $23,000 per processor license.
    • viinjo A1c
       
      Oracle además de desarollar programas sobre R, también los comercializa, obteniendo un beneficio de ello.
  • It's not surprising that Oracle has moved to support R, which "has become a real ubiquitous force in advanced analytics," said Forrester Research analyst James Kobielus. "It's everywhere. Enterprise adoption of it has been growing steadily. When we ask our customers what they're using for statistical modeling they'll say SAS or [IBM's] SPSS, but they increasingly say R in the same breath."
    • viinjo A1c
       
      Oracle reafirma el uso en aumento del lenguaje R entre sus clientes
  • It's not surprising that Oracle has moved to support R, which "has become a real ubiquitous force in advanced analytics," said Forrester Research analyst James Kobielus. "It's everywhere. Enterprise adoption of it has been growing steadily. When we ask our customers what they're using for statistical modeling they'll say SAS or [IBM's] SPSS, but they increasingly say R in the same breath."
  • ...6 more annotations...
  • It's not surprising that Oracle has moved to support R, which "has become a real ubiquitous force in advanced analytics," said Forrester Research analyst James Kobielus. "It's everywhere. Enterprise adoption of it has been growing steadily. When we ask our customers what they're using for statistical modeling they'll say SAS or [IBM's] SPSS, but they increasingly say R in the same breath."
  • adoption
  • It's not surprising that Oracle has moved to support R, which "has become a real ubiquitous force in advanced analytics," said Forrester Research analyst James Kobielus. "It's everywhere. Enterprise adoption of it has been growing steadily. When we ask our customers what they're using for statistical modeling they'll say SAS or [IBM's] SPSS, but they increasingly say R in the same breath."
  • It's not surprising that Oracle has moved to support R, which "has become a real ubiquitous force in advanced analytics," said Forrester Research analyst James Kobielus. "It's everywhere. Enterprise adoption of it has been growing steadily. When we ask our customers what they're using for statistical modeling they'll say SAS or [IBM's] SPSS, but they increasingly say R in the same breath."
  • It's available as an Oracle 11g database option and costs $23,000 per processor license.
    • viinjo A1c
       
      Oracle además de desarollar programas sobre R, también los comercializa, obteniendo un beneficio de ello.  Oracle reafirma el uso en aumento del lenguaje R entre sus clientes
Alexis Agustín

See how Deloitte uses R for actuarial analysis - 0 views

    • Alexis Agustín
       
      Aqui un consultor de Deloitte nos muestra como usa R para explorar datos y ajustarlos en distribuciones, calculando proyecciones usando la regresion de Poisson. Ademas lo contrapone a Excel, concluyendo que no hay una hoja de calculo en la que confundir columnas, si no que en lineas de codigo simple que se puede copiar se puede trabajar mas facilmente con grandes cantidades de datos
  • Jim Guszcza (Predictive Analytics lead at Deloitte Consulting and Assistant Professor at UW-Madison) who gave a great webinar presentation yesterday
  • R is used for exploratory data analysis and modeling, with a live examples of fitting a mixute distribution to bimodal claims data, and calculating loss reserves using Poisson regression.
  • ...2 more annotations...
  • Just one simple line of [R] code that would work just as well for a 100-by-100 loss triangle as it would for a 10-by-10 triangle. No hidden cells in the spreadsheet, no risk of spreadsheet error. It's a little bit of code you could look at in one screen, it's replicable ... and this does all the work that a spreadsheet would do. 
  • He uses the Allstate Claim Prediction Challenge data (from a recent Kaggle competition) to fit a Tweedie model to 13 million records of claim data. (The Tweedie distribution is often used to model insurance claims, where many claims are exactly zero, and non-zero claims follow a continuous Gamma-like distribution.) Using the forthcoming rxGLM function, he fit the model to this large data set in just over two minutes (140.22 seconds) using a single quad-core PC.
Enrique Diaz Romero

An Introduction to R - 1 views

    • nerub val
       
      las carateristicas generales de R
    • nerub val
       
      El desarrollo de R
  • R is an integrated suite of software facilities for data manipulation, calculation and graphical display. Among other things it has an effective data handling and storage facility, a suite of operators for calculations on arrays, in particular matrices, a large, coherent, integrated collection of intermediate tools for data analysis, graphical facilities for data analysis and display either directly at the computer or on hardcopy, and a well developed, simple and effective programming language (called ‘S’) which includes conditionals, loops, user defined recursive functions and input and output facilities. (Indeed most of the system supplied functions are themselves written in the S language.)
    • Enrique Diaz Romero
       
      El entorno de R entre otras cosas nos permite el uso y almacenamiento eficaz de datos, así como su análisis en forma de matrices, un gran numero de herramientas graficas y un lenguaje claro y sencillo de programación en el que podemos encontrar un gran numero de funciones.
  • ...4 more annotations...
  • his section presumes the reader has some familiarity with statistical methodology, in particular with regression analysis and the analysis of variance. Later we make some rather more ambitious presumptions, namely that something is known about generalized linear models and nonlinear regression. The requirements for fitting statistical models are sufficiently well defined to make it possible to construct general tools that apply in a broad spectrum of problems. R provides an interlocking suite of facilities that make fitting statistical models very simple. As we mention in the introduction, the basic output is minimal, and one needs to ask for the details by calling extractor functions.
  • When you use the R program it issues a prompt when it expects input commands. The default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it may appear that nothing is happening. However, as we shall see, it is easy to change to a different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
  • R can be regarded as an implementation of the S language which was developed at Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-Plus systems. The evolution of the S language is characterized by four books by John Chambers and coauthors. For R, the basic reference is The New S Language: A Programming Environment for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The new features of the 1991 release of S are covered in Statistical Models in S edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are based on those described in Programming with Data by John M. Chambers. See References, for precise references. There are now a number of books which describe how to use R for data analysis and statistics, and documentation for S/S-Plus can typically be used with R, keeping the differences between the S implementations in mind. See What documentation exists for R?.
  • R (“GNU S”), a language and environment for statistical computing and graphics. R is similar to the award-winning1 S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety of statistical and graphical techniques
    • Enrique Diaz Romero
       
      ¿Que es R y de donde viene? R nos lo presentan como un lenguaje y entorno que desciende del reconocido sistema S desarrollado por los laboratorios Bell, y que nos ofrece una serie de técnicas u herramientas para el análisis estadístico y gráfico
  •  
    Introducción completa al lenguaje R de programación para análisis de datos estadísticos.
David Moya

What is R? | inside-R | A Community Site for R - 1 views

    • Carlos Espinosa
       
      R desallorador de análisis estadístico siendo sus principales funciones la manipulación de datos,modelo estadístico y un abanico de funciones del análisis de datos que necesites.R es una comunidad on-line abierta en crecimiento.
    • David Moya
       
      R es usado sobretodo para crear programas que realicen estadisticas, ya que fue creado para ello principalmente. Con el se pueden hacer análisis estadísticos, predicciónes, modelos... Tiene herramientas que permiten usar poco código para programar estas estadisticas y modelos. Además es un proyecto libre por lo que puedes tener acceso al código fuente y mejorarlo. Gracias a esto y a la gran comunidad que tiene, actualmente es de una gran calidad y tiene disponibles varios "add-on packages".
  • Complete data analyses can often be represented in just a few lines of code.
  • ...7 more annotations...
  • R is a programming language: you do data analysis in R by writing scripts and functions in the R programming language. R is a complete, interactive, object-oriented language: designed by statisticians, for statisticians.
  • R is data analysis software: data scientists, statisticians, analysts, quants, and others who need to make sense of data use R for statistical analysis, data visualization, and predictive modeling.
  • R has benefited for over 15 years from the "many-eyes" approach to code improvement, and as a result has an extremely high standard of quality and numerical accuracy.
  • R is an open-source software project
  • you can download and use R for free, but the source code is also open for inspection and modification to anyone who wants to see how the methods and algorithms work under the covers.
  • R is an environment for statistical analysis: Available in the R language are functions for virtually every data manipulation, statistical model, or chart that the data analyst could ever need. Not only are all the "standard" methods available, but because most cutting-edge research in statistics and predictive modeling is done in R, the latest techniques are usually available first in the R system.
  • R was first created by Ross Ihaka and Robert Gentleman at the University of Auckland in 1993, and since then the project leadership has grown to include more than 20 leading statisticians and computer scientists from around the world. In addition, thousands of others have contributed additional functionality to the R language by creating add-on "packages" for use by the 2 million users of R worldwide.
Jorge Castro

An Introduction to R - 0 views

  • 1 Introduction and preliminaries
    • Pablo David
       
      Introducción y explicación del lenguaje R
  • 2 Simple manipulations; numbers and vectors
    • Pablo David
       
      Instrucciones para la programación en R
  • 5 Arrays and matrices
  • ...9 more annotations...
  • 5 Arrays and matrices
  • 10 Writing your own functions
    • Pablo David
       
      Crear funciones en lenguaje R
  • 11 Statistical models in R
    • Pablo David
       
      Modelos estadísticos en lenguaje R,
    • Jorge Castro
       
      Utilidades del lenguaje R
  • R is an integrated suite of software facilities for data manipulation, calculation and graphical display.
    • Jorge Castro
       
      Uso básico de números y vectores 
    • Jorge Castro
       
      Instrucciones para escribir tus propias funciones en R
  •  
    Esta página es un manual de todo lo relacionado con el lenguaje de programación R, desde los comandos más básicos hasta usos más complejos como la descomposición QR entre otros.
Alpha Teleco

Time Series Analysis and Mining with R | (R news & tutorials) - 0 views

    • Alpha Teleco
       
      Cómo clasificar y agrupar series de tiempo en R y explicación mediante una serie de ejemplos.
  • classification and clustering of time series data are not readily supported by existing R functions or packages.
    • Alpha Teleco
       
      Ejemplo de descomposición de una serie temporal, con el ejemplo de pasajeros de avión.
  • ...18 more annotations...
  • Time series data are widely seen in analytics. Some examples are stock indexes/prices, currency exchange rates and electrocardiogram (ECG)
  • Time Series Decomposition
  • Time series decomposition is to decompose a time series into trend, seasonal, cyclical and irregular components.
    • Alpha Teleco
       
      Serie de tiempo original.
    • Alpha Teleco
       
      Tendencia.
    • Alpha Teleco
       
      Factores estacionales.
    • Alpha Teleco
       
      Componente aleatoria.
    • Alpha Teleco
       
      Previsión de hechos futuros basados en conocidos.
  • Time Series Forecasting
  • Time series forecasting is to forecast future events based on known past data.
    • Alpha Teleco
       
      Agrupar series temporales basandose en su similitud o distancia.
  • Time Series Clustering
    • Alpha Teleco
       
      Ejemplo de agrupacion con 600 graficos, agrupados en 6 grupos. (Normales, ciclicos, tendencia alcista, tendencia bajista...)
  • Time series clustering is to partition time series data into groups based on similarity or distance, so that time series in the same cluster are similar.
    • Alpha Teleco
       
      Clasificacion de series de tiempo. Construir un modelo de clasificacion basado en las series de tiempo marcadas y usando el modelo construido, predecir la continuación de la series.
  • o build a classification model based on labelled time series and then use the model to predict the label of unlabelled time series.
  • Time series classification is t
  • Time Series Classification
Practica 5 de FOE

'R' language bringing statistical analytics to the masses (Q&A) | Software, Interrupted... - 0 views

  • Predictive analytics has a proven track record in the business intelligence field. Wal-Mart, for one, has used predictive analytics to better understand the habits and tendencies of their customers. Predictive analytics was a driving force in influencing their competitive pricing model that gave them a competitive advantage over their market. Beyond retail, predictive analytics models are used extensively in financial services, pharmaceuticals, life sciences, and a host of other verticals
Yes We Pass

How Google and Facebook are using R « Dataspora - 1 views

    • Javier Soriano
       
      R es un lenguaje de programación que podemos encontrar en tres áreas: manipulación de datos, estadísticas y visualización de datos
    • Javier Soriano
       
      R es utilizado en google y facebook
    • Practica 5 de FOE
       
      Todo lo que está en la red relacionado con R, la sede central de cualquier programa R está en CRAN, y desde CRAN se producen intercambios de informacion con otros lenguajes como el de Matlab, Excel,SAS... 
  • R es utilizado en google y faceboo
  • ...7 more annotations...
  • R is the most popular statistical package at Google
  • and indeed Google is a donor to the R Foundation.
  • He remarked that “The best thing about R is that it was developed by statisticians.
  • What sets it apart from other data analysis tools? It was developed by statisticians, it’s free software, and it is extensible via user-developed packages
  • I began by describing R as a programming language with strengths in three areas: (i) data manipulation, (ii) statistics, and (iii) data visualization.
  • The typical workflow that Bo thus described for using R was: (i) pulling data with some external tool, (ii) loading it into R, (iii) performing analysis and modeling within R, (iv) implementing a resulting model in Python or C++ for a production environment.
    • anonymous
       
      En este artículo muestra empresas como google y facebook utilizan este lenguaje y destacan su dificultad para aprenderlo, pero su compatibilidad con otros programas hace que sea muy utilizado.
  •  
    Usos de R en empresas como Facebook y Google
Alexis Agustín

Actuarial Analytics in R - 0 views

    • Alexis Agustín
       
      En este artículo se expone la increible versatilidad del lenguaje R con un monton de ejemplos en los que se ha usado (Analisis de estadisticas en Baseball, juzgar la calidad de un vino, analisis de datos de un scanner de supermercado) y luego introduce una presentacion donde se analizan 4 casos entre los que se encuentra uno interesante sobre el tiempo ademas de otro donde se valora los datos de un grupo de trabajadores
  • With data analysis showing up in domains as varied as baseball, evidence-based medicine, predicting recidivism and child support lapses, judging wine quality, credit scoring, supermarket scanner data analysis, and “genius” recommendation engines, “business analytics” is part of the zeitgeist. This is a good moment for actuaries to remember that their discipline is arguably the first – and a quarter of a millennium old – example of business analytics at work.
  • This session will include an overview of the R statistical computing environment as well as a sequence of brief case studies of actuarial analyses in R. Case studies will include examples from loss distribution analysis, ratemaking, loss reserving, and predictive modeling.
    • Alexis Agustín
       
      En este artículo se expone la increible versatilidad del lenguaje R con un monton de ejemplos en los que se ha usado (Analisis de estadisticas en Baseball, juzgar la calidad de un vino, analisis de datos de un scanner de supermercado) y luego introduce una presentacion donde se analizan 4 casos entre los que se encuentra uno interesante sobre el tiempo ademas de otro donde se valora los datos de un grupo de trabajadores
nerub val

R FAQ - 0 views

  • The “Comprehensive R Archive Network” (CRAN) is a collection of sites which carry identical material, consisting of the R distribution(s), the contributed extensions, documentation for R, and binaries
  • he CRAN master site at TU Wien, Austria, can be found at the URL http://cran.R-project.org/ Daily mirrors are available at URLs including
  • R is a system for statistical computation and graphics
  • ...27 more annotations...
  • s very similar in appearance to S, the underlying implementation and semantics are derived from Scheme
  • antics are derive
  • mantics are derived
  • It is possible for the user to interface to procedures written in the C, C++, or FORTRAN languages for efficiency.
  • R was initially written by Ross Ihaka and Robert Gentleman
  • Since mid-1997 there has been a core group (the “R Core Team”) who can modify the R source code archive. The group currently consists of Doug Bates, John Chambers, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.
  • R is being developed for the Unix, Windows and Mac
    • nerub val
       
      funciona en mac windows y unix
    • nerub val
       
      creadores del lenguaje c
    • nerub val
       
      colaboradores en el desarrollo asta 1997
  • Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive R Archive Network” (see What is CRAN?)
  • How can R be installed (Macintosh) Next: How can R be installed (Windows), Previous: How can R be installed?, Up: How can R be installed?
    • nerub val
       
      como instalarlo en linux windows y mac
  • Printed copies of the R reference manual for some version(s) are available from Network Theory Ltd, at http://www.network-theory.co.uk/R/base/. For each set of manuals sold, the publisher donates USD 10 to the R Foundation (see What is the R Foundation?).
    • nerub val
       
      manual de referencia de r
    • nerub val
       
      publicado en papel
  • The R distribution also comes with the following manuals. “An Introduction to R” (R-intro) includes information on data types, programming elements, statistical modeling and graphics. This document is based on the “Notes on S-Plus” by Bill Venables and David Smith. “Writing R Extensions” (R-exts) currently describes the process of creating R add-on packages, writing R documentation, R's system and foreign language interfaces, and the R API. “R Data Import/Export” (R-data) is a guide to importing and exporting data to and from R. “The R Language Definition” (R-lang), a first version of the “Kernighan & Ritchie of R”, explains evaluation, parsing, object oriented programming, computing on the language, and so forth. “R Installation and Administration” (R-admin).
    • nerub val
       
      servidores desde conde descargar diferentes paquetes de r
  • It is the opinion of the R Core Team that one can use R for commercial purposes (e.g., in business or in consulting). The GPL, like all Open Source licenses, permits all and any use of the package. It only restricts distribution of R or of other programs containing code from R. This is made clear in clause 6 (“No Discrimination Against Fields of Endeavor”) of the Open Source Definition:
    • nerub val
       
      r es de libre uso, solo esta restringida su distrubucion.
  • The name is partly based on the (first) names of the first two R authors (Robert Gentleman and Ross Ihaka),
    • nerub val
       
      razon del nombre
  • 3.3.1 Lexical scoping
    • nerub val
       
      a partir de aqui hay especificaciones tecnicas del lexico de r
  • Web Interfaces
    • nerub val
       
      proyectos relacionados con r
  • 5.1 Which add-on packages exist for R?
    • nerub val
       
      a partir de aqui estan muchos de los paquetes y que contienen para r.
grupo empresa

'R' language bringing statistical analytics to the masses (Q&A) | Software, Interrupted... - 0 views

    • grupo empresa
       
      El lenguaje r nos permite realizar una gran cantidad de predicciones de mercado y económicas que nunca antes se habian podido sacar con otros lenguajes o métodos.Este lenguaje es utilizado para la realización de predicciones analíticas que ayudan a entender mejor el mercado , las costumbres y las tendencias de los consumidores...Este además es un lenguaje muy joven todavía, al cual se le puede llegar a sacar una gran potencial.
  • Predictive analytics is statistical modeling by any other name. It's used by statisticians and data analysts across all verticals as a means to better understand their organization, both internally and externally. It helps identify trends and patterns, arming CIOs and other enterprise decision makers with the best possible information with which to make their decisions. Predictive analytics has a proven track record in the business intelligence field. Wal-Mart, for one, has used predictive analytics to better understand the habits and tendencies of their customers.
  • : R is still relatively young and is only just now being recognized outside of academic circles. Its practically limitless statistical capabilities make it attractive to anybody doing data analysis, be they a statistics professor or a financial analyst
  • ...1 more annotation...
  • At this point, the future of predictive analytics is pointing directly to R, something we are calling the "perfect storm of predictive analytics."
pajoje lololo

R (programming language) - Wikipedia, the free encyclopedia - 1 views

    • David Moya
       
      Anualmente se celebra un encuentro para los usuarios que utilizan el lenguaje R. Entre los últimos destinos en los que se han celebrado las reuniones, podemos destacar Rennes, Tennessee o Albacete.
  • R is an interpreted language; users typically access it through a command-line interpreter.
  • R supports matrix arithmetic
  • ...7 more annotations...
  • R's data structures include scalars, vectors, matrices, data frames (similar to tables in a relational database) and lists.
  • R's extensible object-system includes objects for (among others): regression models, time-series and geo-spatial coordinates.
  • Although mostly used by statisticians and other practitioners requiring an environment for statistical computation and software development, R can also operate as a general matrix calculation toolbox - with performance benchmarks comparable to GNU Octave or MATLAB.
  • "useR!" is the name given to the official annual gathering of R users.
  • Here is the list of useR! conference: useR! 2004, Vienna, Austria useR! 2006, Vienna, Austria useR! 2007, Ames, Iowa, USA useR! 2008, Dortmund, Germany useR! 2009, Rennes, France useR! 2010, Gaithersburg, Maryland, USA useR! 2011, Coventry, United Kingdom useR! 2012, Nashville, Tennessee, USA useR! 2013, Albacete, Spain
    • David Moya
       
      R es un lenguaje basado en el uso de línea de comandos. Soporta matrices, escalares y vectores además de operar estadísticamente. Su cálculo en el ámbito de matrices es comparable a otros softwares como pueden ser Matlab o GNU Octave.
    • pajoje lololo
       
      Hemos elegido consultar la información general sobre R en la versión en inglés de Wikipedia, ya que nos parecía más completa y elaborada. En primer lugar se enumeran las capacidades principales de este lenguaje y algunos de sus principales usos. También se destaca el hecho de que es 'GNU project' y que está disponible bajo licencia GPL. A pesar de ser un lenguaje que utiliza la linea de comandos, se descaca que existen diversas interfaces gráficas para facilitar su uso. En un apartado posterior se enumeran algunas de las principales versiones de estas interfaces. http://en.wikipedia.org/wiki/R_(programming_language)#Graphical_user_interfaces Se destaca en varios de los apartados del artículo la enorme versatilidad y capacidad de adaptación a distintos campos que posee este lenguaje debido a la gran cantidad de paquetes y extensiones que soporta. También se indica que debido a su herencia del lenguaje S, está más dirigido a la programación orientada a objetos que la mayoria de lenguajes estadísticos. Finalmente se destaca el uso comercial que se le ha dado a este lenguaje, y encontramos ejemplos como el de Oracle y el de Revolution Analytics.
LaRuPu upv

Statistical Computing with R: A tutorial - 0 views

  • R is a software package especially suitable for data analysis and graphical representation
  • is not particularly efficient in handling large data sets
  • Students can quickly grasp the role of outliers and influential points in a simple linear regression
    • LuCla EdPa
       
      No es eficiente manejando bases de datos grandes
  • ...9 more annotations...
  • R can be used as an ordinary calculator
    • LuCla EdPa
       
      Fácil manejo, se puede interactuar con expresiones simples
  • > 2 + 3 * 5      # Note the order of operations. > log (10)       # Natural logarithm with base e=2.718282 > 4^2            # 4 raised to the second power > 3/2            # Division > sqrt (16)      # Square root > abs (3-7)      # Absolute value of 3-7 > pi             # The mysterious number > exp(2)         # exponential function > 15 %/% 4       # This is the integer divide operation > # This is a comment line
    • LuCla EdPa
       
      Al igual que Matlab, puede usarse como una potente calculadora
  • x<- log(2.843432) *pi
    • LuCla EdPa
       
      Ejemplos
  • R can handle complex numbers, too.
    • LuCla EdPa
       
      Para fijar valores a variables, usamos '
  • Important note: since there are many built-in functions in R, make sure that the new object names you assign are not already used by the system. A simple way of checking this is to type in the name you want to use. If the system returns an error message telling you that such object is not found, it is safe to use the name. For example, c (for concatenate) is a built-in function used to combine elements so NEVER assign an object to c!
    • LuCla EdPa
       
      También admite el uso de números complejos
  • Character vector:
    • LuCla EdPa
       
      Al igual que en los lenguajes de programación no puedes poner una variable con nombre de función, en R no puedes asignar una variable con nombre de objeto
  • Note that m1*m2 is NOT the usual matrix multiplication. To do the matrix multiplication, you should use %*% operator instead
    • LuCla EdPa
       
      Vectores de caracteres
  • 2.4 Finding roots: a simple example
    • LuCla EdPa
       
      Para multiplicar matrices, usamos %*%
  • R is a software package especially suitable for data analysis and graphical representation. Functions and results of analysis are all stored as objects, allowing easy function modification and model building. R provides the language, tool, and environment in one convenient package. It is very flexible and highly customizable. Excellent graphical tools make R an ideal environment for EDA (Exploratory Data Analysis). Since most high level functions are written in R language itself, you can learn the language by studying the function code.
    • LuCla EdPa
       
      La información que ya hemos adquirido es suficiente para tener una idea del funcionamiento de R, omitimos el resto
  •  
    Ejemplos gráficos y explicación matemática de lo que es capaz de hacer R
  •  
    uso de R para crear estadisticas y graficos en este caso en la industria del automovil.
Rafa Llopis

R You Ready for R? (1/2) - 0 views

  • Data Analysts Captivated by R’s Power
    • Rafa Llopis
       
      Artículo del New York Times que explica desde el principio las bases del lenguaje R y en qué se emplea.
  • used to set ad prices, find new drugs more quickly or fine-tune financial models
  • R is also the name of a popular programming language used by a growing number of data analysts inside corporations and academia.
  • ...17 more annotations...
  • Google, Pfizer, Merck, Bank of America, the InterContinental Hotels Group and Shell use it.
  • R is really important to the point that it’s hard to overvalue it,” said Daryl Pregibon
  • “It allows statisticians to do very intricate and complicated analyses without knowing the blood and guts of computing systems.”
  • R is similar to other programming languages, like C, Java and Perl
  • . I.B.M., Hewlett-Packard and Dell make billions of dollars a year selling servers that run the open-source Linux operating system
  • Web sites are displayed using an open-source application called Apache,
  • the end results of all this technology via the Firefox Web
  • can help illuminate data trends more clearly than is possible by entering information into rows and columns
  • What makes R so useful
  • is that statisticians, engineers and scientists can improve the software’s code or write variations for specific tasks
  • advanced algorithms, colored and textured graphs and mining techniques to dig deeper into databases.
  • Packages written for R add
  • the professors considered their coding efforts more of an academic game than anything else.
  • the notion of devising something like R sprang up during a hallway conversation.
  • They both wanted technology better suited for their statistics students
  • R immediately gained a following with people who saw the possibilities in customizing the free software.
  • “The diversity and excitement around what all of these people are doing is great,” Mr. Chambers said.
viinjo A1c

Open Source R Language Could Revolutionize Business Intelligence - Enterprise Apps Today - 0 views

  • provides a new framework for fast and efficient multi-core processing of large data sets,
    • LuCla EdPa
       
      Concluimos que R se empezó a usar hace poco y que su crecimiento ha sido muy rápìdo. Ayuda a ello su gran rapidez y fácil manejo
  • After long use in academia, R only recently began to appear in the business world. Among the vendors bringing R into the commercial realm are SAS, Netezza (NYSE: NZ), Revolution Analytics and IBM (NYSE: IBM), which acquired SPSS.
    • viinjo A1c
       
      Introducción del lenguaje R en la empresa (Año 2010).
  • In just two years, Nie's new company has won blue-chip customers such as Bank of America, Motorola and Pfizer.
    • viinjo A1c
       
      A raíz de usar R Nie ha ganado grandes clientes.
  • ...4 more annotations...
  • The company says R users will be able to process, visualize and model terabyte-class data sets in a fraction of the time of legacy products, without the need for expensive or specialized hardware.
    • viinjo A1c
       
      Espectativas de mejora del lenguaje R, por parte de dicha empresa.
  • e processing of large d
  • multi-core processing of lar
  • efficient multi-core processing
Rafa Vaño

Lenguaje R en Linux | - 0 views

    • Rafa Vaño
       
      En esta página se explican algunos comandos más  usados de "r". Los comandos más utilizados son los relacionados con al estadística y las matemáticas. A su vez, asegura que lo más usual es utilizar "r" en UNIX, pero que también se puede utilizar en windows. Al principio, explica un poco de historia.
  • Lenguaje R en Linux
  • El lenguaje R es un sistema para análisis estadístico y gráficos creado por Ross Ihaka y Robert Gentleman
  • ...16 more annotations...
  • dialecto del lenguaje S
  • proyecto de software libre que podemos encontrar a nuestra disposición en un sistema Debian.
  • pero, en Debian, no existen esos archivos. Sin embargo, lanzando synaptic, lo ubiqué con r-cran (por lo del proyecto) e instalando uno de sus paquetes específicos (en este caso fue r-cran-tseries), descargó también el r-base-core como “dependencia”; además de otros paquetes adicionales.
  • través de comandos de cónsola
  • R [Enter]
  • q() [Enter]
  • En el interprete de R, para saber cual es directorio de trabajo: getwd() [Enter]
  • rad <- read.table(“rad.in”) [Enter]
  • rad [Enter]
  • media:
  • mean(rad) [Enter]
  • Para la desviación estándar: sd(rad) [Enter]
  • Para copiar los valores de una variable se usa la función c(). Entonces, para x: x <- c(1,2,3) [Enter] Para y: y <- c(5,7,9) [Enter] y el resultado se visualiza con: lm(y ~ x) [Enter]
  • Para acceder a la ayuda de lm (linear model) basta con: ?lm [Enter]
  • Si se instala el paquete r-base-html se podrá acceder a una documentación más extensa con sólo invocar help.start().
  • los usuarios de Windows también pueden acceder al lenguaje R y el comportamiento del interprete, según leí en la bibliografía al respecto, se realiza de una manera similar al de los sistemas tipo UNIX.
Foe Solitario

Técnicas estadísticas aplicadas a la investigación experimental - 0 views

  •  
    Documento que establece el vínculo entre el entorno R y el método científico
  •  
    Aborda el desarrollo y la valoración del método estadístico mediante R
  •  
    El documento estaría asociado al marco de la estadística aplicada a la bioingeniería y las ciencias de la salud
nerub val

R Programming/Introduction - Wikibooks, open books for an open world - 1 views

  • R is statistical software which is used for data analysis.
  • It includes a huge number of statistical procedures such as t-test, chi-square tests, standard linear models, instrumental variables estimation, local polynomial regressions, etc. It also provides high-level graphics
  • capabilities
  • ...14 more annotations...
  • R is an object oriented programming language. This means that virtually everything can be stored as an R object. Each object has a class. This class describes what the object contains and what each function does with it. For instance, plot(x) produces different outputs depending on whether x is a regression object or a vecto
  • The assignment symbol is "<-". Alternatively, the classical "=" symbol can be used.
  • Arguments are passed to functions inside round brackets (parentheses). One can easily combine functions. For instance you can directly type
  • The symbol "#" comments to the end of the line:
  • Commands are normally separated by a newline. If you want to put more than one statement on a line, you can use the ";" delimiter.
  • You can also have one statement on multiple lines. R is case sensitive: a and A are two different objects. Traditionally underscores "_" are not used in names. It is often better to use dots ".". One should avoid using an underscore as the first character of an object name.
  • Here are some things editors do to keep this book internally consistent. If you have something to contribute, go ahead and make your contribution. Other editors can touch up your edits afterwards so that they conform to the guidelines.
  • The local manual of style WB:LMOS for the R programming book, including a brief explanation of why we do it that way, is: Examples use "source" tags : <source lang="rsplus"> a <- 1:10 ; mean(a) </source>. That makes them look pretty to our readers. The name of packages are in bold  : '''Hmisc'''. Name of functions are in "code" tags: <code>lm()</code>. Page titles -- the part after "R Programming/" -- are in sentence case, like "R Programming/Working with data frames". We couldn't decide between sentence case and title case, so I flipped a coin. Every page has <noinclude>{{R Programming/Navigation}}</noinclude> at the top and {{R Programming/Navbar|Mathematics|Probability Distributions}} at the bottom. That makes it easier to navigate from one page to another online.
    • nerub val
       
      La lenguaje R es un software de estatisticas que hace analisis de los datos.
    • nerub val
       
      Las ventajas de la lenguaje R
    • nerub val
       
      las caracteristicas de la lenguaje R
    • nerub val
       
      Cómo podemos empezar a hacer un programa con esa lenguaje?
    • nerub val
       
      Aqui se exponen otras alternativas al lenguaje R. Y aconseja en la ultima parte cuales son los recomendados para cada nivel de dominio del lenguaje R
  • Beginners can have a look at GNU PSPP or Gretl. Intermediate users can check out Stata. Advanced users who like matrix programming may prefer MATLAB or Octave. Very advanced users may use C or Fortran.
1 - 19 of 19
Showing 20 items per page