Skip to main content

Home/ foe_2013/ Group items tagged basic

Rss Feed Group items tagged

Alpha Teleco

R Tutorial Series: Basic Polynomial Regression | (R news & tutorials) - 0 views

    • Alpha Teleco
       
      Tutorial regresión no lineal basica en R.
  • Polynomial regression can be used to explore a predictor at different levels of curvilinearity.
  • This tutorial will demonstrate how polynomial regression can be used in a hierarchical fashion to best represent a dataset in R.
  • ...24 more annotations...
  • Scatterplot
    • Alpha Teleco
       
      El grafico de dispersion demuestra que estos datos pueden no ser lineales.
  • The preceding scatterplot demonstrates that these data may not be linear.
    • Alpha Teleco
       
      Como crear variables de orden lineal, cuadratico y cubico.
  • Creating The Higher Order Variables
    • Alpha Teleco
       
      Paso 1: centrar la variable, restando la media de cada punto y guardando el resultado en una nueva variable de R.
  • In this tutorial, we will explore the a linear, quadratic, and cubic model.
  • Step 1: Centering
  • To center a variable, simply subtract its mean from each data point and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Paso 2: Crear los terminos de orden superior multiplicando la variable creada por si misma y guardando el resultado en una nueva variable.
  • Step 2: Multiplication
  • Once the input variable has been centered, the higher order terms can be created.
  • we can simply multiply our centered term from step one and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Crear los modelos lineales y no lineales.
  • Creating The Models
  • Now we have all of the pieces necessary to assemble our linear and curvilinear models.
    • Alpha Teleco
       
      Evaluar los modelos y compararlos, en el ejemplo se observa que no ha una diferencia significativa entre los tres modelos.
  • Evaluating The Models
  • In this case, the quadratic and cubic terms are not statistically significant themselves nor are their models statistically significant beyond the linear model.
  • it can be helpful to summarize and compare our potential models using the summary(MODEL) and anova(MODEL1, MODEL2,… MODELi) functions.
    • Alpha Teleco
       
      A traves de los modelos que hay en este tutorial se pueden crear modelos muy complejos, utilizando las mismas sencillas tecnicas de este tutorial.
  • More On Interactions, Polynomials, and HLR
  • The regression topics covered in these tutorials can be mixed and matched to create exceedingly complex models.
  • The good news is that more complex models can be created using the same techniques covered here. The basic principles remain the same.
  •  
    Tutorial
Bora Jasan

Quick-R: Basic Statistics - 0 views

    • Bora Jasan
       
      Siguiendo con el funcionamiento del lenguaje de Programación R, podemos comprobar que puede describir básicas y complejas estadísticas, como por ejemplo: Tablas de contingencia (registrar y analizar la relación entre dos o más variables). Regresiones o ajustes lineales (simple o múltiple): Este tipo de estadísticas también se estudian en Matemáticas II tanto a nivel teórico como a nivel práctico (con Matlab). [...]
    • Bora Jasan
       
      Siguiendo con el funcionamiento del lenguaje de Programación R, podemos comprobar que puede describir básicas y complejas estadísticas, como por ejemplo: Tablas de contingencia (registrar y analizar la relación entre dos o más variables). Regresiones o ajustes lineales (simple o múltiple): Este tipo de estadísticas también se estudian en Matemáticas II tanto a nivel teórico como a nivel práctico (con Matlab). [...]
  • This section describes basic (and not so basic) statistics. It includes code for obtaining descriptive statistics, frequency counts and crosstabulations (including tests of independence), correlations (pearson, spearman, kendall, polychoric), t-tests (with equal and unequal variances), nonparametric tests of group differences
  • ...1 more annotation...
  • multiple linear regression (including diagnostics, cross-validation and variable selection), analysis of variance (including ANCOVA and MANOVA), and statistics based on resampling.
Raúl Sarrión

Basic Data Types | R Tutorial - 0 views

    • Raúl Sarrión
       
      Tipos de datos utilizados en R
    • Raúl Sarrión
       
      Numérico, entero, complejo, lógico y carácter
Rafa Llopis

R aplicado a la psicología - 0 views

  • What makes R particularly powerful is that statisticians and statistically minded people around the world have contributed packages to the R Group and maintain a very active news group offering suggestions and help. The growing collection of packages and the ease with which they interact with each other and the core R is perhaps the greatest advantage of R
    • Rafa Llopis
       
      Esta web afirma que la mejor ventaja del lenguaje R es que es una comunidad abierta y que mejora constantemente.
  • Using R in 12 simple steps for personality research (These steps are not meant to limit what can be done with R, but merely to describe how to do the analysis for the most basic of research projects and to give a first experience with R). Install R on your computer or go to a machine that has it. Download the psych package as well as other recommended packages from CRAN using the install.packages function, or using the package installer in the GUI. To get packages recommended for a particular research field, use the ctv package to install a particular task view. Note, these first two steps need to be done only once! Activate the psych package or other desired packages using e.g., library(psych). This needs to be done every time you start R. Or, it is possible to modify the startup parameters for R so that certain libraries are loaded automatically. Enter your data using a text editor and save as a text file (perhaps comma delimited if using a spreadsheet program such as Excel or OpenOffice) Read the data file or copy and paste from the clipboard (using, e.g., read.clipboard). Find basic descriptive statistics (e.g., means, standard deviations, minimum and maxima) using describe. Prepare a simple descriptive graph (e.g, a box plot) of your variables. Find the correlation matrix to give an overview of relationships (if the number is not too great, a scatter plot matrix or SPLOM plot is very useful, this can be done with pairs.panels. If you have an experimental variable, do the appropriate multiple regression using stan- dardized or at least zero centered scores. If you want to do a factor analysis or principal components analysis, use the factanal or fa and principal function To score items and create a scale and find various reliability estimates, use score.items and perhaps omega. Graph the results.
    • Rafa Llopis
       
      Uso del lenguaje R para estudios psicológicos.
Caballo Loco

Evaluating the Design of the R Language | Lambda the Ultimate - 0 views

    • Caballo Loco
       
      descripción más detallada del lenguaje y experiencias usándolo.
  • R comes equipped with a rather unlikely mix of features. In a nutshell, R is a dynamic language in the spirit of Scheme or JavaScript, but where the basic data type is the vector. It is functional in that functions are first-class values and arguments are passed by deep copy
  • One of our discoveries while working
  • ...2 more annotations...
  • Many basic functions that are lazy in Haskell, for example, are strict in R, including data type constructors.
  • Lazy evaluation is a distinctive feature of R that has the potential for reducing unnecessary work performed by a computation
Enrique Diaz Romero

An Introduction to R - 1 views

    • nerub val
       
      las carateristicas generales de R
    • nerub val
       
      El desarrollo de R
  • R is an integrated suite of software facilities for data manipulation, calculation and graphical display. Among other things it has an effective data handling and storage facility, a suite of operators for calculations on arrays, in particular matrices, a large, coherent, integrated collection of intermediate tools for data analysis, graphical facilities for data analysis and display either directly at the computer or on hardcopy, and a well developed, simple and effective programming language (called ‘S’) which includes conditionals, loops, user defined recursive functions and input and output facilities. (Indeed most of the system supplied functions are themselves written in the S language.)
    • Enrique Diaz Romero
       
      El entorno de R entre otras cosas nos permite el uso y almacenamiento eficaz de datos, así como su análisis en forma de matrices, un gran numero de herramientas graficas y un lenguaje claro y sencillo de programación en el que podemos encontrar un gran numero de funciones.
  • ...4 more annotations...
  • his section presumes the reader has some familiarity with statistical methodology, in particular with regression analysis and the analysis of variance. Later we make some rather more ambitious presumptions, namely that something is known about generalized linear models and nonlinear regression. The requirements for fitting statistical models are sufficiently well defined to make it possible to construct general tools that apply in a broad spectrum of problems. R provides an interlocking suite of facilities that make fitting statistical models very simple. As we mention in the introduction, the basic output is minimal, and one needs to ask for the details by calling extractor functions.
  • When you use the R program it issues a prompt when it expects input commands. The default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it may appear that nothing is happening. However, as we shall see, it is easy to change to a different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
  • R can be regarded as an implementation of the S language which was developed at Bell Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of the S-Plus systems. The evolution of the S language is characterized by four books by John Chambers and coauthors. For R, the basic reference is The New S Language: A Programming Environment for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The new features of the 1991 release of S are covered in Statistical Models in S edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of the methods package are based on those described in Programming with Data by John M. Chambers. See References, for precise references. There are now a number of books which describe how to use R for data analysis and statistics, and documentation for S/S-Plus can typically be used with R, keeping the differences between the S implementations in mind. See What documentation exists for R?.
  • R (“GNU S”), a language and environment for statistical computing and graphics. R is similar to the award-winning1 S system, which was developed at Bell Laboratories by John Chambers et al. It provides a wide variety of statistical and graphical techniques
    • Enrique Diaz Romero
       
      ¿Que es R y de donde viene? R nos lo presentan como un lenguaje y entorno que desciende del reconocido sistema S desarrollado por los laboratorios Bell, y que nos ofrece una serie de técnicas u herramientas para el análisis estadístico y gráfico
  •  
    Introducción completa al lenguaje R de programación para análisis de datos estadísticos.
Raúl Sarrión

R Programming - Manuals - 0 views

  • One of the main attractions of using the R
  • environment is the ease with which users can write their own programs and custom functions. The R programming syntax is extremely easy to learn,
  • Once the basic R programming control structures are understood
  • ...3 more annotations...
  • R language
  • perform complex custom analyses
    • Raúl Sarrión
       
      Creo que lo marcado dice mucho sobre el lenguaje. Simplemente nos dice que dicho lenguaje es muy fácil de comprender y de que una vez dominado el programador será capaz de organizar y gestionar grandes cantidades de datos.
  •  
    Manual muy completo sobre la programación y el lenguaje en R
corozo56

R Programming - Manuals - 0 views

  • Code Editors for R Several excellent code editors are available that provide functionalities like R syntax highlighting, auto code indenting and utilities to send code/functions to the R console. Basic code editors provided by Rguis RStudio: GUI-based IDE for R Vim-R-Tmux: R working environment based on vim and tmux Emacs (ESS add-on package) gedit and Rgedit RKWard Eclipse Tinn-R Notepad++ (NppToR) Programming in R using Vim or Emacs                                                              Programming in R using RStudio
    • teleco teleco
       
      Herramientas basicas para poder programar en R
    • practica5 empresas
       
      el contenido de esta pagina esta enfocado mas detalladamente , desde el punto de vista de la programacion con ejemplos de codigos ect....
  •  
    En esta página podemos ver varios ejemplos de programación en R, desde algunos muy simples a algunos algo más complejos.
Enrique Diaz Romero

JRI - Java/R Interface - RForge.net - 0 views

  • JRI is a Java/R Interface, which allows to run R inside Java applications as a single thread
  • Basically it loads R dynamic library into Java and provides a Java API to R functionality. It supports both simple calls to R functions and a full running REPL.
  • JRI uses native code, but it supports all platforms
  •  
    Interface de java para el uso del lenguaje de programacion R
1 - 9 of 9
Showing 20 items per page