Skip to main content

Home/ foe_2013/ Group items tagged polynomial

Rss Feed Group items tagged

Alpha Teleco

R Tutorial Series: Basic Polynomial Regression | (R news & tutorials) - 0 views

    • Alpha Teleco
       
      Tutorial regresión no lineal basica en R.
  • Polynomial regression can be used to explore a predictor at different levels of curvilinearity.
  • This tutorial will demonstrate how polynomial regression can be used in a hierarchical fashion to best represent a dataset in R.
  • ...24 more annotations...
  • Scatterplot
    • Alpha Teleco
       
      El grafico de dispersion demuestra que estos datos pueden no ser lineales.
  • The preceding scatterplot demonstrates that these data may not be linear.
    • Alpha Teleco
       
      Como crear variables de orden lineal, cuadratico y cubico.
  • Creating The Higher Order Variables
    • Alpha Teleco
       
      Paso 1: centrar la variable, restando la media de cada punto y guardando el resultado en una nueva variable de R.
  • In this tutorial, we will explore the a linear, quadratic, and cubic model.
  • Step 1: Centering
  • To center a variable, simply subtract its mean from each data point and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Paso 2: Crear los terminos de orden superior multiplicando la variable creada por si misma y guardando el resultado en una nueva variable.
  • Step 2: Multiplication
  • Once the input variable has been centered, the higher order terms can be created.
  • we can simply multiply our centered term from step one and save the result into a new R variable, as demonstrated below.
    • Alpha Teleco
       
      Crear los modelos lineales y no lineales.
  • Creating The Models
  • Now we have all of the pieces necessary to assemble our linear and curvilinear models.
    • Alpha Teleco
       
      Evaluar los modelos y compararlos, en el ejemplo se observa que no ha una diferencia significativa entre los tres modelos.
  • Evaluating The Models
  • In this case, the quadratic and cubic terms are not statistically significant themselves nor are their models statistically significant beyond the linear model.
  • it can be helpful to summarize and compare our potential models using the summary(MODEL) and anova(MODEL1, MODEL2,… MODELi) functions.
    • Alpha Teleco
       
      A traves de los modelos que hay en este tutorial se pueden crear modelos muy complejos, utilizando las mismas sencillas tecnicas de este tutorial.
  • More On Interactions, Polynomials, and HLR
  • The regression topics covered in these tutorials can be mixed and matched to create exceedingly complex models.
  • The good news is that more complex models can be created using the same techniques covered here. The basic principles remain the same.
  •  
    Tutorial
nerub val

R Programming/Introduction - Wikibooks, open books for an open world - 1 views

  • R is statistical software which is used for data analysis.
  • It includes a huge number of statistical procedures such as t-test, chi-square tests, standard linear models, instrumental variables estimation, local polynomial regressions, etc. It also provides high-level graphics
  • capabilities
  • ...14 more annotations...
  • R is an object oriented programming language. This means that virtually everything can be stored as an R object. Each object has a class. This class describes what the object contains and what each function does with it. For instance, plot(x) produces different outputs depending on whether x is a regression object or a vecto
  • The assignment symbol is "<-". Alternatively, the classical "=" symbol can be used.
  • Arguments are passed to functions inside round brackets (parentheses). One can easily combine functions. For instance you can directly type
  • The symbol "#" comments to the end of the line:
  • Commands are normally separated by a newline. If you want to put more than one statement on a line, you can use the ";" delimiter.
  • You can also have one statement on multiple lines. R is case sensitive: a and A are two different objects. Traditionally underscores "_" are not used in names. It is often better to use dots ".". One should avoid using an underscore as the first character of an object name.
  • Here are some things editors do to keep this book internally consistent. If you have something to contribute, go ahead and make your contribution. Other editors can touch up your edits afterwards so that they conform to the guidelines.
  • The local manual of style WB:LMOS for the R programming book, including a brief explanation of why we do it that way, is: Examples use "source" tags : <source lang="rsplus"> a <- 1:10 ; mean(a) </source>. That makes them look pretty to our readers. The name of packages are in bold  : '''Hmisc'''. Name of functions are in "code" tags: <code>lm()</code>. Page titles -- the part after "R Programming/" -- are in sentence case, like "R Programming/Working with data frames". We couldn't decide between sentence case and title case, so I flipped a coin. Every page has <noinclude>{{R Programming/Navigation}}</noinclude> at the top and {{R Programming/Navbar|Mathematics|Probability Distributions}} at the bottom. That makes it easier to navigate from one page to another online.
    • nerub val
       
      La lenguaje R es un software de estatisticas que hace analisis de los datos.
    • nerub val
       
      Las ventajas de la lenguaje R
    • nerub val
       
      las caracteristicas de la lenguaje R
    • nerub val
       
      Cómo podemos empezar a hacer un programa con esa lenguaje?
    • nerub val
       
      Aqui se exponen otras alternativas al lenguaje R. Y aconseja en la ultima parte cuales son los recomendados para cada nivel de dominio del lenguaje R
  • Beginners can have a look at GNU PSPP or Gretl. Intermediate users can check out Stata. Advanced users who like matrix programming may prefer MATLAB or Octave. Very advanced users may use C or Fortran.
1 - 2 of 2
Showing 20 items per page