Skip to main content

Home/ Educational Analytics/ Group items tagged research

Rss Feed Group items tagged

George Bradford

Sydney Learning Analytics Research Group (LARG) - 0 views

  •  
    "SYDNEY LEARNING ANALYTICS RESEARCH GROUP
    About
    The Sydney Learning Analytics Research Group (LARG) is a joint venture of the newly established Quality and Analytics Group within the Education Portfolio, and the new Centre for Research on Learning and Innovation connected to the Faculty of Education and Social Work.

    The key purposes in establishing the new research group are:

    Capacity building in learning analytics for the benefit of the institution, its students and staff
    To generate interest and expertise in learning analytics at the University, and build a new network of research colleagues
    To build a profile for the University of Sydney as a national and international leader in learning analytics
    LARG was launched at ALASI in late November 2015. The leadership team is actively planning now for the 2016 calendar year and beyond, with several community-building initiatives already in the pipeline, the first being a lecture by George Siemens, and the second is a new conference travel grant (see details below)."
George Bradford

Open Research Online - Learning analytics to identify exploratory dialogue within synch... - 0 views

  •  
    While generic web analytics tend to focus on easily harvested quantitative data, Learning Analytics will often seek qualitative understanding of the context and meaning of this information. This is critical in the case of dialogue, which may be employed to share knowledge and jointly construct understandings, but which also involves many superficial exchanges. Previous studies have validated a particular pattern of "exploratory dialogue" in learning environments to signify sharing, challenge, evaluation and careful consideration by participants. This study investigates the use of sociocultural discourse analysis to analyse synchronous text chat during an online conference. Key words and phrases indicative of exploratory dialogue were identified in these exchanges, and peaks of exploratory dialogue were associated with periods set aside for discussion and keynote speakers. Fewer individuals posted at these times, but meaningful discussion outweighed trivial exchanges. If further analysis confirms the validity of these markers as learning analytics, they could be used by recommendation engines to support learners and teachers in locating dialogue exchanges where deeper learning appears to be taking place.
George Bradford

Open Research Online - Contested Collective Intelligence: rationale, technologies, and ... - 0 views

  •  
    We propose the concept of Contested Collective Intelligence (CCI) as a distinctive subset of the broader Collective Intelligence design space. CCI is relevant to the many organizational contexts in which it is important to work with contested knowledge, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguous environmental signals. The CCI challenge is to design sociotechnical infrastructures to augment such organizational capability. Since documents are often the starting points for contested discourse, and discourse markers provide a powerful cue to the presence of claims, contrasting ideas and argumentation, discourse and rhetoric provide an annotation focus in our approach to CCI. Research in sensemaking, computer-supported discourse and rhetorical text analysis motivate a conceptual framework for the combined human and machine annotation of texts with this specific focus. This conception is explored through two tools: a social-semantic web application for human annotation and knowledge mapping (Cohere), plus the discourse analysis component in a textual analysis software tool (Xerox Incremental Parser: XIP). As a step towards an integrated platform, we report a case study in which a document corpus underwent independent human and machine analysis, providing quantitative and qualitative insight into their respective contributions. A promising finding is that significant contributions were signalled by authors via explicit rhetorical moves, which both human analysts and XIP could readily identify. Since working with contested knowledge is at the heart of CCI, the evidence that automatic detection of contrasting ideas in texts is possible through rhetorical discourse analysis is progress towards the effective use of automatic discourse analysis in the CCI framework.
George Bradford

Open Research Online - Social Learning Analytics: Five Approaches - 0 views

  •  
    This paper proposes that Social Learning Analytics (SLA) can be usefully thought of as a subset of learning analytics approaches. SLA focuses on how learners build knowledge together in their cultural and social settings. In the context of online social learning, it takes into account both formal and informal educational environments, including networks and communities. The paper introduces the broad rationale for SLA by reviewing some of the key drivers that make social learning so important today. Five forms of SLA are identified, including those which are inherently social, and others which have social dimensions. The paper goes on to describe early work towards implementing these analytics on SocialLearn, an online learning space in use at the UK's Open University, and the challenges that this is raising. This work takes an iterative approach to analytics, encouraging learners to respond to and help to shape not only the analytics but also their associated recommendations.
George Bradford

Open Research Online - Learning dispositions and transferable competencies: pedagogy, m... - 0 views

  •  
    Theoretical and empirical evidence in the learning sciences substantiates the view that deep engagement in learning is a function of a complex combination of learners' identities, dispositions, values, attitudes and skills. When these are fragile, learners struggle to achieve their potential in conventional assessments, and critically, are not prepared for the novelty and complexity of the challenges they will meet in the workplace, and the many other spheres of life which require personal qualities such as resilience, critical thinking and collaboration skills. To date, the learning analytics research and development communities have not addressed how these complex concepts can be modelled and analysed, and how more traditional social science data analysis can support and be enhanced by learning analytics. We report progress in the design and implementation of learning analytics based on a research validated multidimensional construct termed "learning power". We describe, for the first time, a learning analytics infrastructure for gathering data at scale, managing stakeholder permissions, the range of analytics that it supports from real time summaries to exploratory research, and a particular visual analytic which has been shown to have demonstrable impact on learners. We conclude by summarising the ongoing research and development programme and identifying the challenges of integrating traditional social science research, with learning analytics and modelling.
George Bradford

SpringerLink - Abstract - Dr. Fox Rocks: Using Data-mining Techniques to Examine Studen... - 0 views

  •  
    Abstract
    Few traditions in higher education evoke more controversy, ambivalence, criticism, and, at the same time, support than student evaluation of instruction (SEI). Ostensibly, results from these end-of-course survey instruments serve two main functions: they provide instructors with formative input for improving their teaching, and they serve as the basis for summative profiles of professors' effectiveness through the eyes of their students. In the academy, instructor evaluations also can play out in the high-stakes environments of tenure, promotion, and merit salary increases, making this information particularly important to the professional lives of faculty members. At the research level, the volume of the literature for student ratings impresses even the most casual observer with well over 2,000 studies referenced in the Education Resources Information Center (ERIC) alone (Centra, 2003) and an untold number of additional studies published in educational, psychological, psychometric, and discipline-related journals.
    There have been numerous attempts at summarizing this work (Algozzine et al., 2004; Gump, 2007; Marsh & Roche, 1997; Pounder, 2007; Wachtel, 1998). Student ratings gained such notoriety that in November 1997 the American Psychologist devoted an entire issue to the topic (Greenwald, 1997). The issue included student ratings articles focusing on stability and reliability, validity, dimensionality, usefulness for improving teaching and learning, and sensitivity to biasing factors, such as the Dr. Fox phenomenon that describes eliciting high student ratings with strategies that reflect little or no relationship to effective teaching practice (Ware & Williams, 1975; Williams & Ware, 1976, 1977).
1 - 7 of 7
Showing 20 items per page