Skip to main content

Home/ Educational Analytics/ Group items tagged sense-making

Rss Feed Group items tagged

George Bradford

Cohere >>> make the connection - 0 views

  •  
    About Cohere The Web is about IDEAS+PEOPLE. Cohere is a visual tool to create, connect and share Ideas. Back them up with websites. Support or challenge them. Embed them to spread virally. Discover who - literally - connects with your thinking. Publish ideas and optionally add relevant websites Weave webs of meaningful connections between ideas: your own and the world's Discover new ideas and people We experience the information ocean as streams of media fragments, flowing past us in every modality. To make sense of these, learners, researchers and analysts must organise them into coherent patterns. Cohere is an idea management tool for you to annotate URLs with ideas, and weave meaningful connections between ideas for personal, team or social use. Key Features Annotate a URL with any number of Ideas, or vice-versa. Visualize your network as it grows Make connections between your Ideas, or Ideas that anyone else has made public or shared with you via a common Group Use Groups to organise your Ideas and Connections by project, and to manage access-rights Import your data as RSS feeds (eg. bookmarks or blog posts), to convert them to Ideas, ready for connecting Use the RESTful API services to query, edit and mashup data from other tools Learn More Subscribe to our Blog to track developments as they happen. Read this article to learn more about the design of Cohere to support dialogue and debate.
George Bradford

College Degrees, Designed by the Numbers - Technology - The Chronicle of Higher Education - 0 views

  • Arizona State's retention rate rose to 84 percent from 77 percent in recent years, a change that the provost credits largely to eAdvisor.
  • Mr. Lange and his colleagues had found that by the eighth day of class, they could predict, with 70-percent accuracy, whether a student would score a C or better. Mr. Lange built a system, rolled out in 2009, that sent professors frequently updated alerts about how well each student was predicted to do, based on course performance and online behavior.
  • Rio Salado knows from its database that students who hand in late assignments and don't log in frequently often fail or withdraw from a course. So the software is more likely to throw up a red flag for current students with those characteristics.
  • ...5 more annotations...
  • And in a cautionary tale about technical glitches, the college began sharing grade predictions with students last summer, hoping to encourage those lagging behind to step up, but had to shut the alerts down in the spring. Course revisions had skewed the calculations, and some predictions were found to be inaccurate. An internal analysis found no increase in the number of students dropping classes. An improved system is promised for the fall.
  • His software borrows a page from Netflix. It melds each student's transcript with thousands of past students' grades and standardized-test scores to make suggestions. When students log into the online portal, they see 10 "Course Suggestions for You," ranked on a five-star scale. For, say, a health-and-human-performance major, kinesiology might get five stars, as the next class needed for her major. Physics might also top the list, to satisfy a science requirement in the core curriculum.
  • Behind those recommendations is a complex algorithm, but the basics are simple enough. Degree requirements figure in the calculations. So do classes that can be used in many programs, like freshman writing. And the software bumps up courses for which a student might have a talent, by mining their records—grades, high-school grade-point average, ACT scores—and those of others who walked this path before.
  • The software sifts through a database of hundreds of thousands of grades other students have received. It analyzes the historical data to figure out how much weight to assign each piece of the health major's own academic record in forecasting how she will do in a particular course. Success in math is strongly predictive of success in physics, for example. So if her transcript and ACT score indicate a history of doing well in math, physics would probably be recommended over biology, though both satisfy the same core science requirement.
  • Every year, students in Tennessee lose their state scholarships because they fall a hair short of the GPA cutoff, Mr. Denley says, a financial swing that "massively changes their likelihood of graduating."
  •  
    July 18, 2012 College Degrees, Designed by the Numbers By Marc Parry Illustration by Randy Lyhus for The Chronicle Campuses are places of intuition and serendipity: A professor senses confusion on a student's face and repeats his point; a student majors in psychology after a roommate takes a course; two freshmen meet on the quad and eventually become husband and wife. Now imagine hard data substituting for happenstance. As Katye Allisone, a freshman at Arizona State University, hunkers down in a computer lab for an 8:35 a.m. math class, the Web-based course watches her back. Answers, scores, pace, click paths-it hoovers up information, like Google. But rather than personalizing search results, data shape Ms. Allisone's class according to her understanding of the material.
George Bradford

Open Research Online - Discourse-centric learning analytics - 0 views

  •  
    Drawing on sociocultural discourse analysis and argumentation theory, we motivate a focus on learners' discourse as a promising site for identifying patterns of activity which correspond to meaningful learning and knowledge construction. However, software platforms must gain access to qualitative information about the rhetorical dimensions to discourse contributions to enable such analytics. This is difficult to extract from naturally occurring text, but the emergence of more-structured annotation and deliberation platforms for learning makes such information available. Using the Cohere web application as a research vehicle, we present examples of analytics at the level of individual learners and groups, showing conceptual and social network patterns, which we propose as indicators of meaningful learning.
George Bradford

Open Research Online - Contested Collective Intelligence: rationale, technologies, and ... - 0 views

  •  
    We propose the concept of Contested Collective Intelligence (CCI) as a distinctive subset of the broader Collective Intelligence design space. CCI is relevant to the many organizational contexts in which it is important to work with contested knowledge, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguous environmental signals. The CCI challenge is to design sociotechnical infrastructures to augment such organizational capability. Since documents are often the starting points for contested discourse, and discourse markers provide a powerful cue to the presence of claims, contrasting ideas and argumentation, discourse and rhetoric provide an annotation focus in our approach to CCI. Research in sensemaking, computer-supported discourse and rhetorical text analysis motivate a conceptual framework for the combined human and machine annotation of texts with this specific focus. This conception is explored through two tools: a social-semantic web application for human annotation and knowledge mapping (Cohere), plus the discourse analysis component in a textual analysis software tool (Xerox Incremental Parser: XIP). As a step towards an integrated platform, we report a case study in which a document corpus underwent independent human and machine analysis, providing quantitative and qualitative insight into their respective contributions. A promising finding is that significant contributions were signalled by authors via explicit rhetorical moves, which both human analysts and XIP could readily identify. Since working with contested knowledge is at the heart of CCI, the evidence that automatic detection of contrasting ideas in texts is possible through rhetorical discourse analysis is progress towards the effective use of automatic discourse analysis in the CCI framework.
1 - 4 of 4
Showing 20 items per page