Skip to main content

Home/ Classroom 2.0/ Group items tagged prensky

Rss Feed Group items tagged

Carlos Quintero

WebCite query result - 0 views

  •  
    Digital Natives, Digital Immigrants By Marc Prensky From On the Horizon (NCB University Press, Vol. 9 No. 5, October 2001) © 2001 Marc Prensky
Carlos Quintero

Innovate: Future Learning Landscapes: Transforming Pedagogy through Social Software - 0 views

  • Web 2.0 has inspired intense and growing interest, particularly as wikis, weblogs (blogs), really simple syndication (RSS) feeds, social networking sites, tag-based folksonomies, and peer-to-peer media-sharing applications have gained traction in all sectors of the education industry (Allen 2004; Alexander 2006)
  • Web 2.0 allows customization, personalization, and rich opportunities for networking and collaboration, all of which offer considerable potential for addressing the needs of today's diverse student body (Bryant 2006).
  • In contrast to earlier e-learning approaches that simply replicated traditional models, the Web 2.0 movement with its associated array of social software tools offers opportunities to move away from the last century's highly centralized, industrial model of learning and toward individual learner empowerment through designs that focus on collaborative, networked interaction (Rogers et al. 2007; Sims 2006; Sheely 2006)
  • ...19 more annotations...
  • learning management systems (Exhibit 1).
  • The reality, however, is that today's students demand greater control of their own learning and the inclusion of technologies in ways that meet their needs and preferences (Prensky 2005)
  • Tools like blogs, wikis, media-sharing applications, and social networking sites can support and encourage informal conversation, dialogue, collaborative content generation, and knowledge sharing, giving learners access to a wide range of ideas and representations. Used appropriately, they promise to make truly learner-centered education a reality by promoting learner agency, autonomy, and engagement in social networks that straddle multiple real and virtual communities by reaching across physical, geographic, institutional, and organizational boundaries.
  • "I have always imagined the information space as something to which everyone has immediate and intuitive access, and not just to browse, but to create” (2000, 216). Social software tools make it easy to contribute ideas and content, placing the power of media creation and distribution into the hands of "the people formerly known as the audience" (Rosen 2006).
  • the most promising settings for a pedagogy that capitalizes on the capabilities of these tools are fully online or blended so that students can engage with peers, instructors, and the community in creating and sharing ideas. In this model, some learners engage in creative authorship, producing and manipulating digital images and video clips, tagging them with chosen keywords, and making this content available to peers worldwide through Flickr, MySpace, and YouTube
  • Student-centered tasks designed by constructivist teachers reach toward this ideal, but they too often lack the dimension of real-world interactivity and community engagement that social software can contribute.
  • Pedagogy 2.0: Teaching and Learning for the Knowledge Age In striving to achieve these goals, educators need to revisit their conceptualization of teaching and learning (Exhibit 2).
  • Pedagogy 2.0: Teaching and Learning for the Knowledge Age In striving to achieve these goals, educators need to revisit their conceptualization of teaching and learning
  • Pedagogy 2.0 is defined by: Content: Microunits that augment thinking and cognition by offering diverse perspectives and representations to learners and learner-generated resources that accrue from students creating, sharing, and revising ideas; Curriculum: Syllabi that are not fixed but dynamic, open to negotiation and learner input, consisting of bite-sized modules that are interdisciplinary in focus and that blend formal and informal learning;Communication: Open, peer-to-peer, multifaceted communication using multiple media types to achieve relevance and clarity;Process: Situated, reflective, integrated thinking processes that are iterative, dynamic, and performance and inquiry based;Resources: Multiple informal and formal sources that are rich in media and global in reach;Scaffolds: Support for students from a network of peers, teachers, experts, and communities; andLearning tasks: Authentic, personalized, learner-driven and learner-designed, experiential tasks that enable learners to create content.
  • Instructors implementing Pedagogy 2.0 principles will need to work collaboratively with learners to review, edit, and apply quality assurance mechanisms to student work while also drawing on input from the wider community outside the classroom or institution (making use of the "wisdom of crowds” [Surowiecki 2004]).
  • A small portion of student performance content—if it is new knowledge—will be useful to keep. Most of the student performance content will be generated, then used, and will become stored in places that will never again see the light of day. Yet . . . it is still important to understand that the role of this student content in learning is critical.
  • This understanding of student-generated content is also consistent with the constructivist view that acknowledges the learner as the chief architect of knowledge building. From this perspective, learners build or negotiate meaning for a concept by being exposed to, analyzing, and critiquing multiple perspectives and by interpreting these perspectives in one or more observed or experienced contexts
  • This understanding of student-generated content is also consistent with the constructivist view that acknowledges the learner as the chief architect of knowledge building. From this perspective, learners build or negotiate meaning for a concept by being exposed to, analyzing, and critiquing multiple perspectives and by interpreting these perspectives in one or more observed or experienced contexts. In so doing, learners generate their own personal rules and knowledge structures, using them to make sense of their experiences and refining them through interaction and dialogue with others.
  • Other divides are evident. For example, the social networking site Facebook is now the most heavily trafficked Web site in the United States with over 8 million university students connected across academic communities and institutions worldwide. The majority of Facebook participants are students, and teachers may not feel welcome in these communities. Moreover, recent research has shown that many students perceive teaching staff who use Facebook as lacking credibility as they may present different self-images online than they do in face-to-face situations (Mazer, Murphy, and Simonds 2007). Further, students may perceive instructors' attempts to coopt such social technologies for educational purposes as intrusions into their space. Innovative teachers who wish to adopt social software tools must do so with these attitudes in mind.
  • "students want to be able to take content from other people. They want to mix it, in new creative ways—to produce it, to publish it, and to distribute it"
  • Furthermore, although the advent of Web 2.0 and the open-content movement significantly increase the volume of information available to students, many higher education students lack the competencies necessary to navigate and use the overabundance of information available, including the skills required to locate quality sources and assess them for objectivity, reliability, and currency
  • In combination with appropriate learning strategies, Pedagogy 2.0 can assist students in developing such critical thinking and metacognitive skills (Sener 2007; McLoughlin, Lee, and Chan 2006).
  • We envision that social technologies coupled with a paradigm of learning focused on knowledge creation and community participation offer the potential for radical and transformational shifts in teaching and learning practices, allowing learners to access peers, experts, and the wider community in ways that enable reflective, self-directed learning.
  • . By capitalizing on personalization, participation, and content creation, existing and future Pedagogy 2.0 practices can result in educational experiences that are productive, engaging, and community based and that extend the learning landscape far beyond the boundaries of classrooms and educational institutions.
  •  
    About pedagogic 2.0
  •  
    Future Learning Landscapes: Transforming Pedagogy through Social Software Catherine McLoughlin and Mark J. W. Lee
David Peter

MIT Press Journals - International Journal of Learning and Media - Full Text - 0 views

  • Now, with study becoming a lifelong enterprise, and with the advent of a galaxy of new media, “learning” seems once again poised to become all things to all people, be they lay or scholarly.
    • David Peter
       
      So, since we are all lifelong learners with access to transparent, pervasive and ubiquitous technology ... not sure NEW media is all that NEW.
  • learning that do not occur automatically, readily, naturally, or by dint of simply living in a certain place at a certain time
    • David Peter
       
      Almost seems to be speaking of PROGRAMMED learning, and not the new learning environment/commons. Isn't all learning contextual?
  • we may well have reached a set of tipping points: Going forward, learning may be far more individualized, far more in the hands (and the minds) of the learner, and far more interactive than ever before
    • David Peter
       
      Barr and Tagg mentioned this SHIFT earlier.
  • ...7 more annotations...
  • advent of a galaxy of new media
    • David Peter
       
      What NEW media are they speaking of? The NEW media is always changing and may be difficult to specifically link to lifelong learners. Prensky speaks of digital natives and digital immigrants. Does all media work for all readers/users?
  • we may well have reached a set of tipping points
    • David Peter
       
      We are BEYOND the tipping point. More likely to be a GROUNDSWELL and it's up to us to ride the wave or not.
  • learning may be at once more individual
    • David Peter
       
      Thanks to technology, or inspite of technology?
  • Both the demands of the workplace and the demands of education have changed profoundly and promise to do so for the foreseeable future.
    • David Peter
       
      And, in addition, the focus has shifted to global learning, and not localized learning. The advent of 21st century skills, the reemergence of liberal education ... all are continuing to change and demand change.
  • technology is often cited as a primary driver of cultural change
    • David Peter
       
      Interesting thought. Is this an anthropological conclusion? A social conclusion? Who has cited this?
  • One could argue that a strictly formal learning experience is characterized by classroom-based instruction featuring an explicit curriculum and traditional pedagogical goals, and scaffolding implemented by a single educator; a pure informal learning experience lacks all of these characteristics
    • David Peter
       
      This would imply that informal learnnig, without structure, is somehow inferior. Isn't the tone of learning set by the classroom, the teacher and other variables?
  • A successful informal learning practice depends upon an independent, constructivistically oriented learner who can identify, locate, process, and synthesize the information he or she is lacking
    • David Peter
       
      Hard to imagine that this can ONLY occur with a constructivist paradigm?
anonymous

Critical Issue: Using Technology to Improve Student Achievement - 0 views

shared by anonymous on 23 Feb 10 - Cached
  • Technologies available in classrooms today range from simple tool-based applications (such as word processors) to online repositories of scientific data and primary historical documents, to handheld computers, closed-circuit television channels, and two-way distance learning classrooms. Even the cell phones that many students now carry with them can be used to learn (Prensky, 2005).
  • Bruce and Levin (1997), for example, look at ways in which the tools, techniques, and applications of technology can support integrated, inquiry-based learning to "engage children in exploring, thinking, reading, writing, researching, inventing, problem-solving, and experiencing the world." They developed the idea of technology as media with four different focuses: media for inquiry (such as data modeling, spreadsheets, access to online databases, access to online observatories and microscopes, and hypertext), media for communication (such as word processing, e-mail, synchronous conferencing, graphics software, simulations, and tutorials), media for construction (such as robotics, computer-aided design, and control systems), and media for expression (such as interactive video, animation software, and music composition). In a review of existing evidence of technology's impact on learning, Marshall (2002) found strong evidence that educational technology "complements what a great teacher does naturally," extending their reach and broadening their students' experience beyond the classroom. "With ever-expanding content and technology choices, from video to multimedia to the Internet," Marshall suggests "there's an unprecedented need to understand the recipe for success, which involves the learner, the teacher, the content, and the environment in which technology is used."
  • In examining large-scale state and national studies, as well as some innovative smaller studies on newer educational technologies, Schacter (1999) found that students with access to any of a number of technologies (such as computer assisted instruction, integrated learning systems, simulations and software that teaches higher order thinking, collaborative networked technologies, or design and programming technologies) show positive gains in achievement on researcher constructed tests, standardized tests, and national tests.
  • ...4 more annotations...
  • Boster, Meyer, Roberto, & Inge (2002) examined the integration of standards-based video clips into lessons developed by classroom teachers and found increases student achievement. The study of more than 1,400 elementary and middle school students in three Virginia school districts showed an average increase in learning for students exposed to the video clip application compared to students who received traditional instruction alone.
  • Wenglinsky (1998) noted that for fourth- and eighth-graders technology has "positive benefits" on achievement as measured in NAEP's mathematics test. Interestingly, Wenglinsky found that using computers to teach low order thinking skills, such as drill and practice, had a negative impact on academic achievement, while using computers to solve simulations saw their students' math scores increase significantly. Hiebert (1999) raised a similar point. When students over-practice procedures before they understand them, they have more difficulty making sense of them later; however, they can learn new concepts and skills while they are solving problems. In a study that examined relationship between computer use and students' science achievement based on data from a standardized assessment, Papanastasiou, Zemblyas, & Vrasidas (2003) found it is not the computer use itself that has a positive or negative effect on achievement of students, but the way in which computers are used.
  • Another factor influencing the impact of technology on student achievement is that changes in classroom technologies correlate to changes in other educational factors as well. Originally the determination of student achievement was based on traditional methods of social scientific investigation: it asked whether there was a specific, causal relationship between one thing—technology—and another—student achievement. Because schools are complex social environments, however, it is impossible to change just one thing at a time (Glennan & Melmed, 1996; Hawkins, Panush, & Spielvogel, 1996; Newman, 1990). If a new technology is introduced into a classroom, other things also change. For example, teachers' perceptions of their students' capabilities can shift dramatically when technology is integrated into the classroom (Honey, Chang, Light, Moeller, in press). Also, teachers frequently find themselves acting more as coaches and less as lecturers (Henriquez & Riconscente, 1998). Another example is that use of technology tends to foster collaboration among students, which in turn may have a positive effect on student achievement (Tinzmann, 1998). Because the technology becomes part of a complex network of changes, its impact cannot be reduced to a simple cause-and-effect model that would provide a definitive answer to how it has improved student achievement.
  • When new technologies are adopted, learning how to use the technology may take precedence over learning through the technology. "The technology learning curve tends to eclipse content learning temporarily; both kids and teachers seem to orient to technology until they become comfortable," note Goldman, Cole, and Syer (1999). Effective content integration takes time, and new technologies may have glitches. As a result, "teachers' first technology projects generate excitement but often little content learning. Often it takes a few years until teachers can use technology effectively in core subject areas" (Goldman, Cole, & Syer, 1999). Educators may find impediments to evaluating the impact of technology. Such impediments include lack of measures to assess higher-order thinking skills, difficulty in separating technology from the entire instructional process, and the outdating of technologies used by the school. To address these impediments, educators may need to develop new strategies for student assessment, ensure that all aspects of the instructional process—including technology, instructional design, content, teaching strategies, and classroom environment—are conducive to student learning, and conduct ongoing evaluation studies to determine the effectiveness of learning with technology (Kosakowski, 1998).
Jean Potter

http://betch.edublogs.org/2009/01/06/the-myth-of-the-digital-native/ - 36 views

  •  
    Are all young people digital natives? Many older folks may well be digital immigrants but is there a marked difference in their abilities from digital natives?
  •  
    This was a link from Joe's suggestion "ASH's 23 Things..." which I really liked. I would like to set up something similar on "my campus".
  •  
    This article raised some great points about the labels we place on people of a certain age group, but obviously things are more complicated than the convenient labels our society uses to clasify people. The problem I see in the examples cited are the problems of a generation where you ask and it is done. Digital "immigrants" adapt and embrace new technology because of motivation. Their Job!! I agree that we need to utilize the exprience and perspective of my generation (49 yrs, 25 teaching) with the fearless exploration of my students. They show me what they've located and I can help them understand the relative value of what they've found. Help them develope the tools of analysis and I can learn how to get to information I didn't know existed. We don't need labels, we need to inspire students to want to know what's the value of what they've discovered.
Nigel Coutts

Revisiting Digital Natives, Digital Immigrants - 17 views

  •  
    In 2001 Marc Prensky divided the world into two broad groups, Digital Natives and Digital Immigrants. His idea struck a chord with popular culture and has become a dominant paradigm in education. Given the core concept remains a feature of educational dialogues it is worth re-visiting and seeing how the idea might evolve to better serve our needs and understandings of how people born after the internet, learn with and think about, technology.
  •  
    goodby 2015 welcome 2016 to all friends
  •  
    Mothers day quotes .
1 - 7 of 7
Showing 20 items per page