Skip to main content

Home/ About The Indian Ocean/ Group items tagged Maine

Rss Feed Group items tagged

Jérôme OLLIER

Numerical simulations of generation and propagation of internal tides in the Andaman Se... - 0 views

  •  
    The generation and propagation of internal tides in the Andaman Sea are investigated using a three-dimensional high-resolution numerical model. Three categories of experiments, including driving the model with four main semidiurnal tides (M2, S2, N2, and K2), four main diurnal tides (K1, O1, P1, and Q1), and eight main tides (M2, S2, N2, K2, K1, O1, P1, and Q1), are designed to examine the effects of barotropic tides. The results show that the semidiurnal internal tides are dominant in the Andaman Sea, and the inclusion of diurnal barotropic tides negligibly modulates this result. That is partly due to the strength of the diurnal barotropic tides is generally one order smaller than that of the semidiurnal barotropic tides in this region. The sensitivity experiments put this on a firmer footing. In terms of the internal tidal energy, the experiments driven by the diurnal barotropic tides are three orders and one order smaller than those driven by the semidiurnal barotropic tides, respectively, during the spring and neap tides. In addition, the experiments result in total barotropic-to-baroclinic energy conversion rates over the Andaman Sea 29.15 GW (driven by the eight tides), 29.24 GW (driven by the four semidiurnal tides), and 0.05 GW (driven by the fourdiurnal tides) in the spring tidal period and 3.08 GW, 2.56 GW, and 0.31 GW in the neap tidal period, respectively. Four potential generation regions of internal tides are found, three of which are in the Andaman and Nicobar Islands and one in the northeastern Andaman Sea.
Jérôme OLLIER

54 years of microboring community history explored by machine learning in a massive cor... - 0 views

  •  
    Coral reefs are increasingly in jeopardy due to global changes affecting both reef accretion and bioerosion processes. Bioerosion processes dynamics in dead reef carbonates under various environmental conditions are relatively well understood but only over a short-term limiting projections of coral reef evolution by 2100. It is thus essential to monitor and understand bioerosion processes over the long term. Here we studied the assemblage of traces of microborers in a coral core of a massive Diploastrea sp. from Mayotte, allowing us to explore the variability of its specific composition, distribution, and abundance between 1964 and 2018. Observations of microborer traces were realized under a scanning electron microscope (SEM). The area of coral skeleton sections colonized by microborers (a proxy of their abundance) was estimated based on an innovative machine learning approach. This new method with 93% accuracy allowed analyzing rapidly more than a thousand SEM images. Our results showed an important shift in the trace assemblage composition that occurred in 1985, and a loss of 90% of microborer traces over the last five decades. Our data also showed a strong positive correlation between microborer trace abundance and the coral bulk density, this latter being particularly affected by the interannual variation of temperature and cumulative insolation. Although various combined environmental factors certainly had direct and/or indirect effects on microboring species before and after the breakpoint in 1985, we suggest that rising sea surface temperature, rainfall, and the loss of light over time were the main factors driving the observed trace assemblage change and decline in microborer abundance. In addition, the interannual variability of sea surface temperature and instantaneous maximum wind speed appeared to influence greatly the occurrence of green bands. We thus stress the importance to study more coral cores to confirm the decadal trends observed in the Diploas
Jérôme OLLIER

Atlantic Ocean may get a jump start from the other side of the world - @Yale - 0 views

  •  
    A key question for climate scientists in recent years has been whether the Atlantic Ocean's main circulation system is slowing down, a development that could have dramatic consequences for Europe and other parts of the Atlantic rim. But a new study suggests help may be on the way from an unexpected source - the Indian Ocean.
Jérôme OLLIER

Warming seas double snowfall around North America's tallest peaks - @physorg_com - 0 views

  •  
    Warming seas double snowfall around North America's tallest peaks.
Jérôme OLLIER

Environmental Factors and Genetic Diversity as Drivers of Early Gonadal Maturation: A G... - 0 views

  •  
    In recent years, attaining gonadal maturation in smaller Hilsa (Tenualosa ilisha) has become a burning issue for Hilsa fishery of Bangladesh. Causes of early maturation are not yet clearly understood. Along with environmental parameters, genetic differentiation within the population was hypothesized as the main driver, and therefore, assessing the correlation between gonadosomatic index (GSI) and environmental factors and analyzing genetic diversity were set as objectives of the present study. To address these complex issues, six diverse habitats across Bangladesh were chosen for Hilsa sample collection. For GSI, gonad was dissected from fresh fish and preserved in Bouin's fluid for histological observation. Water quality parameters such as temperature, dissolved oxygen, pH, and salinity were also assessed. 35 fish from each habitat were used to extract and amplify DNA through the PCR technique, and genetic diversity was examined. Further, to draw a firm conclusion, the phylogenetic tree of the Hilsa population was developed by the unweighted pair-group method of arithmetic mean method based on the Cyt b gene of mitochondrial DNA. Results of GSI studies revealed that peak spawning months of T. ilisha were in October and February, where October showed the highest values in all six habitats. Histological examination showed different stages of gonadal development in different sizes and ages of Hilsa. Among all sampling sites, no statistical difference was observed for GSI value; however, smaller sized and aged Hilsa being ripped were evident in Gaglajur Haor and Kali River. Among the observed water quality parameters, temperature correlated with GSI strongly. Increased GSI was observed with temperature augmentation from downstream to upper stream, irrespective of body size and age. A perplex correlation between dissolved oxygen of observed habitats and GSI was executed. Other physico-chemical parameters viz. pH and salinity exhibited weak and moderate positive associ
Jérôme OLLIER

All coral reefs in the Western Indian Ocean at high risk of collapse within 50 years - ... - 0 views

  •  
    A new assessment of the coral reefs of the Western Indian Ocean shows that they are all at high risk of collapse within the next five decades. Ocean warming and overfishing were identified as the main threats.
Jérôme OLLIER

Managing a multi-species fishery in distant waters: the case of the Spanish-flagged pur... - 0 views

  •  
    According to the latest report on the state of World Food and Agriculture Organization fisheries and aquaculture (SOFIA, 2022), skipjack (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) are among the five most caught finfish species of the world, with 2,827 and 1,569 thousand tons in 2020, respectively. The tropical purse seiners deploy large nets around tuna schools in the tropical waters of the world. This method targets three main tuna species, skipjack, yellowfin and bigeye (Thunnus obesus) tunas, which are mainly used for canning or frozen markets. This important fishery provides employment opportunities for many people in developing countries. Landings for the European long-distance fishery targeting tuna and tuna-like fishes from Indian Ocean, amounted to 303,638 tons valued at EUR 423.7 million (Prellezo et al., 2022), where the Spanish fleet of purse seiners targeting tropical tuna is the most important. The Spanish tropical purse seine fleet fishing in the Indian Ocean accounts for 26% of the skipjack and yellowfin tunas caught from Indian Ocean, which represent approximately 3% of worldwide catch for both species.
Jérôme OLLIER

Benthic species patterns in and around the Cape Canyon: A large submarine canyon off th... - 0 views

  •  
    Although submarine canyons are internationally recognized as sensitive ecosystems and reported to be biological hotspots, regional studies are required to validate this consensus. To this end, hydrographic and benthic biodiversity data were collected during three cruises (2016-2017) to provide insights on the benthic patterns within South African canyon and non-canyon offshore areas. A total of 25 stations, sampled at 200-1000 m depth range, form the basis of the multivariate analysis. Diversity gradients were calculated and then differences were compared across substrate types and depth zones represented within 12 canyon and 13 non-canyon stations. Significant differences in both substrate and depth were evident, despite measures being highly variable. This observation of varying diversity in different substrates is in line with previous studies. No clear pattern was observed for species diversity (delta+). However, non-canyon stations overall showed a higher diversity in comparison to canyon stations. A notable peak in diversity is observed in canyon areas in the 401-500 m depth zone. Species richness followed an opposing pattern, as it decreased with depth and was consistently higher in canyon areas. These results align with the well-defined influence of depth-related variables on the distribution of taxonomic groups and the substrate available, at various scales. The eutrophic characteristic of the Benguela region may have attributed to the insignificant diversity differences between canyon and non-canyon stations. To assess the benthic species structure in canyon and non-canyon areas, we converted the 108 benthic species into a gamma+ matrix. We then modelled the biological response to predictor variables (substrate and depth). Although the canyon and non-canyon areas have an overlapping species composition, the main effects (canyon vs. non-canyon, depth, and substrate) showed significant differences. Thirteen species were characteristic of canyon areas, whilst
Jérôme OLLIER

Via @WhySharksMatter - Approaches for estimating natural mortality in tuna stock assess... - 0 views

  •  
    The values used for natural mortality (M) are very influential in stock assessment models, affecting model outcomes and management advice. Natural mortality is one of the most difficult demographic parameters to estimate, and there is often limited information about the true levels. Here, we summarise the evidence used to estimate natural mortality at age for the four main stocks of yellowfin tuna (Indian, Western and Central Pacific, Eastern Pacific, and Atlantic Oceans), including catch curves, tagging experiments, and maximum observed age. We identify important issues for estimating M such as variation with age linked to size, maturity state or senescence, and highlight information gaps. We describe the history of natural mortality values used in stock assessments by the tuna Regional Fisheries Management Organisations responsible for managing each stock and assess the evidence supporting these values. In June 2021, an online meeting was held by the Center for the Advancement of Population Assessment Methodology (CAPAM), to provide advice and guidance on practices for modelling natural mortality in fishery assessments. Based on approaches presented and discussed at the meeting, we develop a range of yellowfin tuna natural mortality estimates for each stock. We also recommend future research to improve these estimates of natural mortality.
Jérôme OLLIER

Sediment provenances shift driven by sea level and Indian monsoon in the southern Bay o... - 0 views

  •  
    The Tibetan Plateau uplift has induced the formation of the largest sediment source-sink system in the northeast Indian Ocean, which has become an ideal region for investigating land-sea interaction processes. However, many questions regarding sediment transport patterns and their controlling factors at different time scales remain unanswered. Therefore, in the present study, a gravity core named BoB-79, based on the southern Bay of Bengal (BoB) was selected to investigate sediment provenance shift and its corresponding mechanism to sedimentary environment change since the last glacial maximum (LGM). The clay mineral compositions are analyzed and the whole core sediments reveal a feature dominated by illite (~55%), followed by chlorite (~24%) and kaolinite (~17%), and the content of smectite (~4%) is the lowest. A trigonometric analysis of provenance discrimination of clay minerals showed that the Himalayas, together with the Indian Peninsula, represent the main sources of southern BoB sediments, and the last glacial period might have been controlled by the dominant Himalayan provenance, with an average contribution of approximately 90%. However, as a secondary source, the influence of the Indian Peninsula increased significantly during the Holocene, and its mean contribution was 24%, thus, indicating that it had a crucial effect on the evolution process of BoB. The sediment transportation pattern changed significantly from the LGM to the Holocene: in the last glacial period, the low sea level exposed the shelf area that caused the Ganges River connected with the largest submarine canyon in BoB named Swatch of No Ground (SoNG), and the Himalayan materials could be transported to the BoB directly under a strong turbidity current, thereby forming the deep sea deposition center with a sedimentation rate of 4.5 cm/kyr. Following Holocene, the sea level increased significantly, and the materials from multiple rivers around the BoB were directly imported into the continen
Jérôme OLLIER

Coupled hydrodynamic and water quality modeling in the coastal waters off Chennai, East... - 0 views

  •  
    Coastal waters are inherently dynamic due to river discharge, industrial effluents, shipping, dredging, waste dumping, and sewage disposal. Population growth in urban cities, climate change and variability, and changes in land-use practices all contribute to pressure on coastal water quality (SKOVSKI et al., 2012; MILLER and HUTCHINS, 2017; KUMAR et al., 2020; Vijay PRAKASH et al., 2021). Anthropogenic activity is evident around these estuaries and coastal and open ocean environments. Hence, it is important to assess the water quality on a regular basis and provide mitigation measures for coastal pollution (YUVARAJ et al., 2018). Improving water quality and variability in coastal waters is necessary and should be prioritized. Observational programs, which are more expensive and time-consuming, aid in understanding the status of water quality and its trends. Many countries have coastal programs that use predictive systems to inform the public and stakeholders about coastal health. Hydrodynamic processes are an integral part of complex surface water systems. The main factor that determines the concentration of pollutants is hydrodynamic transport, which includes advection, dispersion, vertical mixing, and convection (James, 2002). The flow and circulation patterns have a great influence not only on the distribution of temperature, nutrients, and dissolved oxygen (DO) but also on the aggregation and distribution of sediments and pollutants. When a load of pollutants is discharged into coastal waters, it is affected by the fate and transportation processes that change its concentration. Several studies have been conducted to evaluate the coastal water quality spatiotemporally along the east coast of Indian coastal waters using site-specific data and model configuration (PANDA et al., 2006; BHARAHTI et al., 2017; NAIK et al., 2020; MOHANTY et al., 2021). Through numerical modeling and remote sensing, estimation is user-friendly and low-cost in evaluating any water quali
Jérôme OLLIER

Biology of exploited groupers (Epinephelidae family) around La Réunion Island... - 0 views

  •  
    The groupers (Epinephelidae family) are demersal species that are a vulnerable resource due to increasing fishing pressure around Reunion Island. Five species of groupers are among the main species exploited by commercial and recreational fisheries around La Réunion Island: blacktip grouper (Epinephelus fasciatus; Forsskål 1775), oblique-banded grouper (Epinephelus radiatus; Day 1868), golden hind (Cephalopholis aurantia, Valenciennes 1828), white-edged lyretail (Variola albimarginata; Baissac 1953) and yellow-edged lyretail (Variola louti; Fabricius 1775). From 2014 to 2021, a total of 482 individuals were caught. Body length-weight relationships showed a significant relationship between total length and total weight for all species. Among the five grouper species, significant sexual dimorphism was only observed for E. fasciatus. For each grouper species, the von Bertalanffy model gave the best fit for the ageing data. While the unconstrained von Bertalanffy model fitted very well to the data of four species (C. aurantia, E. radiatus; V. albimarginata and V. louti), the Gompertz model gave the best fit for the ageing data of E. fasciatus. The parameters of these growth models gave the asymptotic length TL∞ (from 28.9 cm for C. aurantia to 76.6 cm for V. louti), and growth rate K (from 0.16 for V. albimarginata to 0.40 for E. fasciatus) for each species. Consequently the growth performance index for these grouper species varied from 2.40 to 3.09. Based on gonad observation, the length at first sexual maturity of females varied between 14 to 18 cm for C. aurantia, E. fasciatus and V. albimarginata, to 32 cm for E. radiatus and 34 cm for V. louti. The corresponding age at first sexual maturity by species ranged from 1.67 to 6.65 years old. Reproduction intensity showed that reproduction peaked for a period of three months each year. Three species (C. aurantia; E. fasciatus and V. louti) reproduced mainly in summer, between December to March, while E. radiatus and
Jérôme OLLIER

Diversity and community structure of microzooplankton in the eastern Indian Ocean durin... - 0 views

  •  
    Microzooplankton (MZP) are an important part of the microbial food web and play a pivotal role in connecting the classic food chain with the microbial loop in the marine ecosystem. They may play a more important role than mesozooplankton in the lower latitudes and oligotrophic oceans. In this article, we studied the species composition, dominant species, abundance, and carbon biomass of MZP, including the relationship between biological variables and environmental factors in the eastern equatorial Indian Ocean during the spring intermonsoon. We found that the MZP community in this ocean showed a high species diversity, with a total of 340 species. Among these, the heterotrophic dinoflagellates (HDS) (205 species) and ciliates (CTS) (126 species) were found to occupy the most significant advantageous position. In addition, CTS (45.3%) and HDS (39.7%) accounted for a larger proportion of the population abundance, while HDS (47.1%) and copepod nauplii (CNP) (46.4%) made a larger contribution to the carbon biomass. There are significant differences in the ability of different groups of MZP to assimilate organic carbon. In this sea area, MZP are affected by periodic currents, and temperature is the main factor affecting the distribution of the community. The MZP community is dominated by eurytopic species and CNP. CTS are more sensitive to environmental changes than HDS, among which Ascampbelliella armilla may be a better habitat indicator species. In low-latitude and oligotrophic ocean areas, phytoplankton with smaller cell diameters were found to occupy a higher proportion, while there was no significant correlation between the total concentration of integrated chlorophyll a and the biological variables of MZP. Therefore, we propose that the relationship between size-fractionated phytoplankton and MZP deserves further study. In addition, the estimation of the carbon biomass of MZP requires the establishment of more detailed experimental methods to reflect the real situ
Jérôme OLLIER

Social-ecological vulnerability to climate change and risk governance in coastal fishin... - 0 views

  •  
    In Bangladesh, fishing communities are one of the most climate-vulnerable groups, though they play an important role in economic development. The main objective of this study was to identify vulnerability by exploring exposure (i.e., lack of regulating services or household capitals), susceptibility (i.e., lack of access to provisioning services), and lack of resilience (i.e., lack of alternative livelihoods and capacity) and to explore adaptation options, and challenges to understand risk governance. The study considered 45 published research articles for analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Keywords were used in combinations (e.g., fishing communities and Bangladesh) to identify and screen published articles. Articles published in English focusing on vulnerability and/or risk governance, published between 2011 and 2022, featuring original empirical data or a comprehensive systematic review, and published in peer-reviewed journals were included. Articles were excluded if vulnerability and risk governance were evaluated but did not fit or match the definition used in this study. The study found frequent disasters and ocean warming caused different stresses, such as reduced fish catch and income, and resulted in an increased risk of fisheries conflict. Moreover, fishing communities have limited access to properties, modern fishing equipment, financial institutions, and fisher-centered organizations. Adaptation strategies include ecosystem-based (e.g., plantation, payment for ecosystem services) and non-ecosystem-based (e.g., temporary migration, getting help from neighbors) approaches. To boost fish production, the Government of Bangladesh instituted fishing restrictions and social safety net programs (e.g., distributing rice during the fishing restrictions); both initiatives were helpful. However, the conservation policies are not being implemented properly, and there is no particular social welfa
Jérôme OLLIER

Water sources of the Lombok, Ombai and Timor outflows of the Indonesian throughflow - @... - 0 views

  •  
    The Lombok Strait (LS), Ombai Strait (OS), and Timor Passage (TP) are three major outlets of the Indonesian Throughflow to the Indian Ocean. Here, sources and pathways of the LS, OS, and TP outflows are explored by a Lagrangian particle tracking analysis based on a ~3 km regional ocean model simulation. The Makassar Strait transport contributes to ~80%, ~75%, and ~45% of the LS, OS, and TP outflows, respectively. However, ~41% and ~19% of the TP and OS outflows stem from the Lifamatola Passage, which largely feeds the upper and intermediate layers of the outflows. The role of Karimata Strait is quite limited and restricted to the upper layer. It takes 1-2 years and 2-6 years for the Makassar Strait water to reach the OS and TP, respectively, whereas the Lifamatola Passage water passes through the OS (2-6 years) and TP (3-9 years) on a prolonged transit time. In the Banda Sea, the western boundary current is the main pathway toward the OS, while the waters to the TP tend to take a basin interior route.
Jérôme OLLIER

Radular Morphology and Relationship Between Shell Size and Radula Size of Few Dominatin... - 0 views

  •  
    The radula is the main feeding organ and also very significant to the majority of the mollusks (especially gastropod) taxonomy. With shell morphology, radular morphology is the key characteristic for the identification of gastropod species. The shape and structure of the radular teeth are unique from family to species level. In this study, five basic types of radula (i.e., docoglossan, rhipidoglossan, taenioglossan, stenoglossan, and toxoglossan), which were observed from a total of 23 different species belonging to 12 families, were examined. Collection of the voucher intertidal gastropod specimen for the study had initiated during May-October 2019 in the rocky intertidal area near Veraval of the south Saurashtra coastline. Direct handpicking methods were used for the collection of the specimen for experiments.
Jérôme OLLIER

Processes controlling the distributions and cycling of dissolved aluminum and manganese... - 0 views

  •  
    Aluminum and manganese are both key parameters in the GEOTRACES program. Data on dissolved aluminum (dAl) and dissolved manganese (dMn) relative to their geochemical behavior remain limited in the northeastern Indian Ocean (IO; including the Bay of Bengal (BoB) and equatorial Indian Ocean (Eq. IO)). Seawater samples collected in the BoB and Eq. IO during the spring inter-monsoon period (7 March to 9 April) of 2017 were analyzed to investigate the behavior and main processes controlling the distributions of dAl and dMn in the northeastern IO. The average concentrations of dAl and dMn in the mixed layer of the BoB were 16.6 and 6.7 nM, respectively. A modified 1-D box-model equation was utilized to estimate the contributions of different sources to dAl and dMn in the mixed layer. Al released from the desorption of and/or dissolution of the lithogenic sediments discharged by the Ganga-Brahmaputra (G-B) river system predominantly controlled the dAl distributions in the mixed layer of the BoB, while the desorption from the lithogenic sediments only contributed approximately 13%-21% dMn. Additional dMn input from the advection of Andaman Sea water and photo-reduction-dissolution of particulate Mn(IV) contributed more than 60% dMn in the mixed layer of the BoB. dAl and dMn in the surface mixed layer of the Eq. IO were mainly affected by the mixing of dAl- and dMn-enriched BoB surface water and low-dAl, low-dMn southern Arabian Sea surface water. Considering water mass properties and dAl concentrations, the distributions of dAl in the intermediate water (750-1,500 m) of northeastern IO were controlled by the mixing of Red Sea Intermediate Water, Indonesian Intermediate Water, and intermediate water of the BoB. Different from dAl, the apparent oxygen utilization relationship with dMn concentrations indicated that the regeneration of lithogenic particles under hypoxic conditions played a more important role than the remineralization of settling organic particles in co
Jérôme OLLIER

Seagrasses produce most of the soil blue carbon in three Maldivian islands - @FrontMari... - 0 views

  •  
    Blue carbon is fast garnering international interest for its disproportionate contribution to global carbon stocks. However, our understanding of the size of these blue carbon stocks, as well as the provenance of carbon that is stored within them, is still poor. This is especially pertinent for many small-island nations that may have substantial blue carbon ecosystems that are poorly studied. Here, we present a preliminary assessment of blue carbon from three islands in the Maldives. The higher purpose of this research was to assess the feasibility of using blue carbon to help offset carbon emissions associated with Maldivian tourism, the largest Maldivian industry with one of the highest destination-based carbon footprints, globally. We used stable isotope mixing models to identify how habitats contributed to carbon found in sediments, and Loss on Ignition (LoI) to determine carbon content. We found that for the three surveyed islands, seagrasses (Thalassia hemprichii, Thalassodendron ciliatum, Halodule pinofilia, Syringodium isoetifolium, and Cymodocea rotundata) were the main contributors to sediment blue carbon (55 - 72%) while mangroves had the lowest contribution (9 - 44%). Surprisingly, screw pine (Pandanus spp.), a relative of palm trees found across many of these islands, contributed over a quarter of the carbon found in sediments. Organic carbon content ('blue carbon') was 6.8 ± 0.3 SE % and 393 ± 29 tonnes ha-1 for mangrove soils, and 2.5 ± 0.2% and 167 ± 20 tonnes ha-1 for seagrasses, which is slightly higher than global averages. While preliminary, our results highlight the importance of seagrasses as carbon sources in Maldivian blue carbon ecosystems, and the possible role that palms such as screw pines may have in supplementing this. Further research on Maldivian blue carbon ecosystems is needed to: 1) map current ecosystem extent and opportunities for additionality through conservation and restoration; 2) determine carbon sequestration ra
Jérôme OLLIER

The impact of interactions between various systems caused by three consecutive years of... - 0 views

  •  
    In the summer of 2022, like in many other regions of the world, an unprecedented period of continuous high-temperature weather occurred in eastern China. The degree and duration of this event far exceeded normal standards. Between 2020 and 2022, the tropical Pacific experienced the most significant three-year consecutive La Nina event recorded in recent decades. We investigate linkages between these events: the high-temperature response in eastern China and Asia under the background of such La Nina events. Development of summer La Nina events contributed to a high-temperature heat wave during the summer of 2022. Rapid development of these events in the third year exacerbated negative Indian Ocean Dipole phases because of energy accumulation from abnormal easterly winds. The combined effects of the negative Indian Ocean Dipole phase and La Nina provided background field support that strengthened the West Pacific Subtropical High (WPSH) and the Iranian High, leading to high terrestrial temperature anomalies. An empirical orthogonal function (EOF) analysis of the vertical velocity in the middle and low latitudes of the tropical Indian Ocean and the Asian continent reveals the first two empirical orthogonal function modes to be conducive to the strengthening of Walker circulation in 2022. These two main modes jointly reflect the rising movement of the equatorial East Indian Ocean and South China Sea in 2022, and the sinking movement to the west of the Tibet Plateau and eastern China, which was conducive to generating high temperatures in eastern China. Finally, the South Asian High was affected by the La Nina event that lasted for three years, showing a strong trend towards the north, thus making an important contribution to this high temperature.
Jérôme OLLIER

Study Provides New Insights on Drought Predictions in East Africa - WHOI - 0 views

  •  
    Research May Also Help Determine Effects of Global Warming in the Region.
1 - 20 of 26 Next ›
Showing 20 items per page